working with valuations
play

Working with valuations Thibaut Verron Johannes Kepler University, - PowerPoint PPT Presentation

Working with valuations Thibaut Verron Johannes Kepler University, Institute for Algebra, Linz, Austria Sminaire Calcul Formel, Limoges 27 fvrier 2020 1 Part 1: Signature Grbner bases over Tate algebras joint work with Xavier Caruso 1


  1. Working with valuations Thibaut Verron Johannes Kepler University, Institute for Algebra, Linz, Austria Séminaire Calcul Formel, Limoges 27 février 2020 1

  2. Part 1: Signature Gröbner bases over Tate algebras joint work with Xavier Caruso 1 and Tristan Vaccon 2 1. Institut de Mathématiques de Bordeaux, Bordeaux, France 2. XLIM, Université de Limoges, Limoges, France Séminaire Calcul Formel, Limoges 27 février 2020 2

  3. Precision and Gröbner bases ◮ Qestion: in R [ X ] , reduce f = X 2 modulo g = 0 . 01 X − 1 3

  4. Precision and Gröbner bases ◮ Qestion: in R [ X ] , reduce f = X 2 modulo g = 0 . 01 X − 1 LT ( g ) ◮ The usual way: ◮ Another way? f = X 2 f = X 2 + X 2 g − 100 Xg 0 . 01 X 3 100 X + 0 . 01 X 3 g − 10 000 g 0 . 0001 X 4 10 000 ◮ It terminates, but... · · · · · · ◮ g ≃ 1, but f mod g �≃ 0 It does not terminate, but... ◮ The sequence of reductions tends to 0 ◮ 3

  5. Precision and Gröbner bases ◮ Qestion: in R [ X ] , reduce f = X 2 modulo g = 0 . 0001 X − 1 LT ( g ) ◮ The usual way: ◮ Another way? f = X 2 f = X 2 + X 2 g − 10 000 Xg 0 . 0001 X 3 10 000 X + 0 . 0001 X 3 g − 100 000 000 g 0 . 000 000 01 X 4 100 000 000 ◮ It terminates, but... · · · · · · ◮ g ≃ 1, but f mod g �≃ 0 It does not terminate, but... ◮ The sequence of reductions tends to 0 ◮ 3

  6. Precision and Gröbner bases ◮ Qestion: in R [ X ] , reduce f = X 2 modulo g = 0 . 000 001 X − 1 LT ( g ) ◮ The usual way: ◮ Another way? f = X 2 f = X 2 + X 2 g − 1 000 000 Xg 0 . 000 001 X 3 1 000 000 X + 0 . 000 001 X 3 g − 1 000 000 000 000 g 0 . 000 000 000 001 X 4 1 000 000 000 000 ◮ It terminates, but... · · · · · · ◮ g ≃ 1, but f mod g �≃ 0 It does not terminate, but... ◮ The sequence of reductions tends to 0 ◮ 3

  7. Precision and Gröbner bases ◮ Qestion: in R [ X ] , reduce f = X 2 modulo g = 0 . 01 X − 1 LT ( g ) ◮ The usual way: ◮ Another way? f = X 2 f = X 2 + X 2 g − 100 Xg 0 . 01 X 3 100 X + 0 . 01 X 3 g − 10 000 g 0 . 0001 X 4 10 000 ◮ It terminates, but... · · · · · · ◮ g ≃ 1, but f mod g �≃ 0 It does not terminate, but... ◮ The sequence of reductions tends to 0 ◮ 3

  8. Precision and Gröbner bases ◮ Qestion: in R [ X ] , reduce f = X 2 modulo g = 0 . 0001 X − 1 LT ( g ) ◮ The usual way: ◮ Another way? f = X 2 f = X 2 + X 2 g − 10 000 Xg 0 . 0001 X 3 10 000 X + 0 . 0001 X 3 g − 100 000 000 g 0 . 000 000 01 X 4 100 000 000 ◮ It terminates, but... · · · · · · ◮ g ≃ 1, but f mod g �≃ 0 It does not terminate, but... ◮ The sequence of reductions tends to 0 ◮ 3

  9. Precision and Gröbner bases ◮ Qestion: in R [ X ] , reduce f = X 2 modulo g = 0 . 000 001 X − 1 LT ( g ) ◮ The usual way: ◮ Another way? f = X 2 f = X 2 + X 2 g − 1 000 000 Xg 0 . 000 001 X 3 1 000 000 X + 0 . 000 001 X 3 g − 1 000 000 000 000 g 0 . 000 000 000 001 X 4 1 000 000 000 000 ◮ It terminates, but... · · · · · · ◮ g ≃ 1, but f mod g �≃ 0 It does not terminate, but... ◮ The sequence of reductions tends to 0 ◮ 3

  10. Precision and Gröbner bases ◮ Qestion: in R [ X ] , reduce f = X 2 modulo g = 0 . 000 001 X − 1 ◮ The usual way: ◮ Another way? f = X 2 f = X 2 + X 2 g − 1 000 000 Xg 0 . 000 001 X 3 1 000 000 X + 0 . 000 001 X 3 g − 1 000 000 000 000 g 0 . 000 000 000 001 X 4 1 000 000 000 000 ◮ It terminates, but... · · · · · · ◮ g ≃ 1, but f mod g �≃ 0 It does not terminate, but... ◮ The sequence of reductions tends to 0 ◮ ◮ This work: make sense of this process for convergent power series in Z p [[ X ]] 3

  11. Valued fields and rings: basic definitions Valuation: function val : k → Z ∪ {∞} with: ◮ val ( a ) = ∞ ⇐ ⇒ a = 0 0 ◮ val ( ab ) = val ( a ) + val ( b ) a · b = ab ? ? ? ◮ val ( a + b ) ≥ min( val ( a ) , val ( b )) a + b = a + b a + b = a + b val ( a ) = 3 a = a 3 π 3 + a 4 π 4 + . . . b = b − 3 π − 3 + b − 2 π − 2 + . . . π Examples: 1 val ( b ) = − 3 4

  12. Examples of valued fields and rings Frac Ring K ◦ Field K Uniformizer π Residue field K ◦ /π Complete val ≥ 0 Z ( p ) Q p prime F p × Now Z p Q p p prime F p � C [ x ] ( x − α ) C ( x ) x − α C × C [[ x − α ]] C (( x − α )) x − α C � In part 2 5

  13. Examples of valued fields and rings Frac Ring K ◦ Field K Uniformizer π Residue field K ◦ /π Complete val ≥ 0 Z ( p ) Q p prime F p × Now Z p Q p p prime F p � C [ x ] ( x − α ) C ( x ) x − α C × C [[ x − α ]] C (( x − α )) x − α C � In part 2 ◮ Metric and topology defined by “ a is small” ⇐ ⇒ “val ( a ) is large” ◮ In a complete valuation ring, a series is convergent iff its general term goes to 0: � 0 n = 0 a n = a 0 5

  14. Examples of valued fields and rings Frac Ring K ◦ Field K Uniformizer π Residue field K ◦ /π Complete val ≥ 0 Z ( p ) Q p prime F p × Now Z p Q p p prime F p � C [ x ] ( x − α ) C ( x ) x − α C × C [[ x − α ]] C (( x − α )) x − α C � In part 2 ◮ Metric and topology defined by “ a is small” ⇐ ⇒ “val ( a ) is large” ◮ In a complete valuation ring, a series is convergent iff its general term goes to 0: � 1 n = 0 a n = a 0 + a 1 5

  15. Examples of valued fields and rings Frac Ring K ◦ Field K Uniformizer π Residue field K ◦ /π Complete val ≥ 0 Z ( p ) Q p prime F p × Now Z p Q p p prime F p � C [ x ] ( x − α ) C ( x ) x − α C × C [[ x − α ]] C (( x − α )) x − α C � In part 2 ◮ Metric and topology defined by “ a is small” ⇐ ⇒ “val ( a ) is large” ◮ In a complete valuation ring, a series is convergent iff its general term goes to 0: � 2 n = 0 a n = a 0 + a 1 + a 2 5

  16. Examples of valued fields and rings Frac Ring K ◦ Field K Uniformizer π Residue field K ◦ /π Complete val ≥ 0 Z ( p ) Q p prime F p × Now Z p Q p p prime F p � C [ x ] ( x − α ) C ( x ) x − α C × C [[ x − α ]] C (( x − α )) x − α C � In part 2 ◮ Metric and topology defined by “ a is small” ⇐ ⇒ “val ( a ) is large” ◮ In a complete valuation ring, a series is convergent iff its general term goes to 0: � 3 n = 0 a n = a 0 + a 1 + a 2 + a 3 5

  17. Examples of valued fields and rings Frac Ring K ◦ Field K Uniformizer π Residue field K ◦ /π Complete val ≥ 0 Z ( p ) Q p prime F p × Now Z p Q p p prime F p � C [ x ] ( x − α ) C ( x ) x − α C × C [[ x − α ]] C (( x − α )) x − α C � In part 2 ◮ Metric and topology defined by “ a is small” ⇐ ⇒ “val ( a ) is large” ◮ In a complete valuation ring, a series is convergent iff its general term goes to 0: � ∞ n = 0 a n = a 0 + a 1 + a 2 + a 3 + · · · 5

  18. Examples of valued fields and rings Frac Ring K ◦ Field K Uniformizer π Residue field K ◦ /π Complete val ≥ 0 Z ( p ) Q p prime F p × Now Z p Q p p prime F p � C [ x ] ( x − α ) C ( x ) x − α C × C [[ x − α ]] C (( x − α )) x − α C � In part 2 ◮ Metric and topology defined by “ a is small” ⇐ ⇒ “val ( a ) is large” ◮ In a complete valuation ring, a series is convergent iff its general term goes to 0: � ∞ n = 0 a n = a 0 + a 1 + a 2 + a 3 + · · · 5

  19. Examples of valued fields and rings Frac Ring K ◦ Field K Uniformizer π Residue field K ◦ /π Complete val ≥ 0 Z ( p ) Q p prime F p × Now Z p Q p p prime F p � C [ x ] ( x − α ) C ( x ) x − α C × C [[ x − α ]] C (( x − α )) x − α C � In part 2 ◮ Metric and topology defined by “ a is small” ⇐ ⇒ “val ( a ) is large” ◮ In a complete valuation ring, a series is convergent iff its general term goes to 0: � ∞ n = 0 a n = a 0 + a 1 + a 2 + a 3 + · · · 5

  20. Tate Series X = X 1 , . . . , X n Definition ◮ K { X } ◦ = ring of series in X with coefficients in K ◦ converging for all x ∈ K ◦ = ring of power series whose general coefficients tend to 0 Motivation ◮ Introduced by Tate in 1971 for rigid geometry ( p -adic equivalent of the bridge between algebraic and analytic geometry over C ) Examples ◮ Polynomials (finite sums are convergent) ∞ π i + j X i Y j = 1 + π X + π Y + π 2 X 2 + π 2 XY + π 2 Y 2 + · · · � ◮ i , j = 0 ∞ X i = 1 + 1 X + 1 X 2 + 1 X 3 + · · · � ◮ Not a Tate series: i = 0 6

  21. Term ordering for Tate algebras X i = X i 1 1 · · · X i n n ◮ Starting from a usual monomial ordering 1 < m X i 1 < m X i 2 < m . . . ◮ We define a term ordering puting more weight on large coefficients Usual term ordering: Term ordering for Tate series: π · 1 < m 1 X i 1 < m π X i 2 < m π 2 X i 3 < m · · · · · · < π 2 X i 3 < π · 1 < π X i 2 < 1 X i 1 < · · · < m 7

  22. Term ordering for Tate algebras X i = X i 1 1 · · · X i n n ◮ Starting from a usual monomial ordering 1 < m X i 1 < m X i 2 < m . . . ◮ We define a term ordering puting more weight on large coefficients Usual term ordering: Term ordering for Tate series: π · 1 < m 1 X i 1 < m π X i 2 < m π 2 X i 3 < m · · · · · · < π 2 X i 3 < π · 1 < π X i 2 < 1 X i 1 < · · · < m ◮ It has infinite descending chains, but they converge to zero LT ( f ) ◮ Tate series always have a leading term f = a 2 XY + a 1 X + a 0 · 1 + a 3 X 2 Y 2 + . . . 7

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend