wkb
play

WKB Alpha-Decay Gamows Simple Model Some Improvements Tristan - PowerPoint PPT Presentation

Quantum Mechanics II WKB Alpha-Decay Gamows Simple Model Some Improvements Tristan Hbsch Department of Physics and Astronomy, Howard University, Washington DC http://physics1.howard.edu/~thubsch/ Q WKB M II The Story


  1. Quantum Mechanics II WKB Alpha-Decay 
 Gamow’s Simple Model 
 Some Improvements Tristan Hübsch Department of Physics and Astronomy, Howard University, Washington DC 
 http://physics1.howard.edu/~thubsch/

  2. Q 
 WKB M 
 II The Story So Far… Extra! b Focus&on&1)dimensional&physics: H ψ = E ψ q h 2 ⇥ ⇤ d 2 H = − ¯ 2 M b k ( x ) : = E � W ( x ) d x 2 + W ( x ) h 2 ¯ 2 M The&“standard&wave)functions”&are: q k ( x ) e + i R k ( x ) e � i R ⇥ ⇤ d x k ( x ) + d x k ( x ) A B where%E%>%W(x) WKB ( x ) = ψ p p κ ( x ) e � R κ ( x ) e + R d x κ ( x ) + d x κ ( x ) p C D where%E%<%W(x) WKB ( x ) = ψ p p � ⇤ Matching&conditions: Barrier to Left Barrier to Right The&lower&limit&in&the 
 ( ϑ ⇤ A + ϑ B ) 2 ( ϑ ⇤ A + ϑ B ) = = 1 C C integrals&in&the&exponents 
 2 ( ϑ A + ϑ ⇤ B ) ( ϑ A + ϑ ⇤ B ) = 1 = D D is&the&reference&point&in 
 2 ϑ C + ϑ ⇤ D 2 ϑ ⇤ D = 1 = ϑ C + 1 A A the&matching&condition 
 2 ϑ ⇤ C + ϑ D ϑ ⇤ C + 1 = 1 = B B 2 ϑ D speci?ication 2

  3. q ⇥ ⇤ Q 
 WKB M 
 κ ( x ) e � R κ ( x ) e + R d x κ ( x ) + d x κ ( x ) C D WKB ( x ) = ψ p p II R R d x k ( x ) + k ( x ) e + i d x k ( x ) k ( x ) e � i A B WKB ( x ) = ψ p p Applications Potential&well&w/transition&points& x *& = & a &and& x *& = & b & The&energy)quantization&relation&is:& Z b n ( 2 n + 3 4 ) π n ( 2 n + 1 2 ) π n ( 2 n + 1 ) π q 2 M = h 2 [ E � W ( x )] = 4 ) π = a d x ( 2 n + 7 ( 2 n + 3 2 ) π ( 2 n + 2 ) π ¯ W ( x ) W ( x ) W ( x ) “symmetric” “antisymmetric” E E E a b a b a b n Whenever& W ( x )&crosses& E &discontinuously& 4 ψ ( x ) = 0 = 4 ψ 0 ( x ) p � ⇤ Whenever& W ( x )&crosses& E &continuously Barrier to Left Barrier to Right = ( ϑ ⇤ A + ϑ B ) = 1 2 ( ϑ ⇤ A + ϑ B ) C C WKB connection formulae 2 ( ϑ A + ϑ ⇤ B ) ( ϑ A + ϑ ⇤ B ) = 1 = D D 2 ϑ C + ϑ ⇤ D 2 ϑ ⇤ D = 1 = ϑ C + 1 A A = 1 2 ϑ ⇤ C + ϑ D = ϑ ⇤ C + 1 3 B B 2 ϑ D

  4. Q 
 WKB: α -Decay M 
 II General Physics Facts Extra! One&typical&α)decay&starts&with&Uranium)234&(92& p &&&142& n ) Too&complicated:&234&3)vectors&(702&equations&of&motion) …with&C 2234 &=&27,261&pairwise&potential&terms …representing&the& strong &nuclear&forces&keeping&the&nucleus&stable …where&a&(2 p 2 n )&subset&form&a&subsystem …that&escapes&the&strongly&attractive&potential&of&230&other&nucleons 2 He ++ + A + 4 A + 4 4 A A α Z Y −− , Z + 2 X → or Z + 2 X Z Y. − − → Special&cases:& A – Z &=(# n )=&2,&8,&20,&28,&50,&82,&126&(“magic&numbers”) Lead)208&(# p =82&&&# n =126)&is&doubly&magical p ’s&and& n ’s&separately&form&“closed&shells” Polonium)212&→&α&+&Lead)208;&think&&Po)212&=&[Pb)208+α],&which&decays “Parent&nucleus”&=&[“Daughter&nucleus”+ α ]&→&“Daughter&nucleus”&+& α “Daughter&nucleus”⇒&(classical)&potential&in&which&(quantum)& α &moves 4

  5. Q 
 WKB: α -Decay M 
 II General Physics Facts Extra! The&“daughter&nucleus”&potential: is&attractive&0&≤& r, ≤&(R~1fm)&(strong&interactions),&where& W ( r )&<&0 away&from&the&daughter&nucleus,& r &=& R ∞ , ≫&( R ~1fm)&,& W ( r )&=&2 Ze′, 2 / r &(E&M) in)between,&R&≤&r&≪& R ∞ ,& W ( r )&provides&a&barrier For&min[ W ( r )]&≤& E &≤&0,& α &is&stably&bound For&0&≤& E &≤&max[ W ( r )],& α &is&unstably&bound&and&can&decay&(&&“un)decay”) &&there&exist&two&points&where& E α &=& W ( a )&=& W ( b ) Classically&allowed 
 & 0&≤& r &≤& a &&&&& b &≤& r &≤&∞ Classically&forbidden 
 W ( r ) ~ strong intermediate electrostatic & a &≤& r &≤& b & nuclear region interaction forces For&max[ W ( r )]&≤& E &≤&0 
 barrier a b E α &is&free&to&move 
 R r inside everywhere the well outside 5

  6. Q 
 WKB: α -Decay M 
 II Gamow’s Simple Model Extra! 1928&(only&2&years&after&Schrödinger’s&equation),&G.A.&Gamow: For&0&≤& r &≤& R ,& W ( r )&=&– V 0 &=& const .  � For& R &≤& r &<&∞,& W ( r )&=&2 Ze′, 2 / r & h ¯ r 2 + W ( ~ r ) y ( r , q , f ) = E y ( r , q , f ) , ~ � 2 m a W ( r ) A 0 e i R r B 0 e � i R r b d r k ( r ) + b d r k ( r ) , u III ( r ) = p p k ( r ) k ( r ) I II III u I ( r ) = A sin ( Kr + δ ) , E 0 R b r r C e � R r D R r 2 m α R d r κ ( r ) + R d r κ ( r ) , defined by setting u II ( r ) = e K = h 2 ( E + V 0 ) , p p p p κ ( r ) κ ( r ) ¯ ( 2 e 0 )( Ze 0 ) ! = E b � V 0 s s ⇣ 2 Ze 0 2 E � 2 Ze 0 2 2 m α 2 m α ⌘ ⇣ ⌘ κ ( r ) = � E k ( r ) = , . h 2 h 2 r r ¯ ¯ d 2 u ⇤ � ` ( ` + 1 )  2 m α � 6 ψ ( r , θ , φ ) = u ( r ) r P m ` ( cos θ ) e im φ , ⇥ d r 2 + E � W ( r ) u = 0, h 2 r 2 ¯  6

  7. Q 
 WKB: α -Decay W ( r ) M 
 I II III II E 0 R b r defined by setting Gamow’s Simple Model Extra! ( 2 e 0 )( Ze 0 ) ! = E b � V 0 @ r &=& R ,&I&↔&II: r ! R � u 0 r ! R + u 0 r ! R � u I ( r ) = r ! R + u II ( r ) , I ( r ) = II ( r ) . lim lim lim lim A sin ( KR ) = C + D AK cos ( KR ) = ( � C + D ) p κ R , , p κ R solve&for&C,&D: A ⇥ ⇤ C = κ R sin ( KR ) � K cos ( KR ) , 2 p κ R A ⇥ ⇤ D = κ R sin ( KR ) + K cos ( KR ) . 2 p κ R @& r &=& b ,&II&↔&III&(for& α )decay,&B′&=&0): C = ϑ ⇤ e σ A 0 , Z b Z b r r 2 Ze 0 2 2 m α σ = R d r κ R = R d r � E . 2 ϑ e � σ A 0 , D = 1 h 2 r ¯ ϑ = e i π /4 , 7

  8. Q 
 WKB: α -Decay M 
 II Gamow’s Simple Model Extra! So,&we&have: A C = ϑ ⇤ e σ A 0 , ⇥ ⇤ C = κ R sin ( KR ) � K cos ( KR ) , ⇥ ⇤ 2 p κ R I↔II II↔III A A ⇥ ⇤ D = 1 2 ϑ e � σ A 0 , ⇥ ⇤ D = κ R sin ( KR ) + K cos ( KR ) , 2 p κ R Dividing&one&by&the&other: ϑ 2 e � 2 σ = 2 κ R sin ( KR ) + K cos ( KR ) imaginary real that ϑ 2 = i , κ R sin ( KR ) � K cos ( KR ) …which&is&horribly&wrong! What&have&we&done&??? Math:&imposed&boundary&conditions&left&and&right&( u I (0)&=&0&&& B ′&=&0) Physics:&assumed&only& α )decay,&no& α )capture&(un)decay) 8

  9. Q 
 II WKB: α -Decay M 
 Gamow’s Simple Model Extra! Re)do,&not&assuming& B ′&=&0: ⇤ + ϑ ⇤ e σ A A 0 = ϑ e � σ A ⇥ ⇥ ⇤ κ R sin ( KR ) � K cos ( KR ) κ R sin ( KR ) + K cos ( KR ) , 4 p κ R 4 p κ R = ϑ e σ A cos ( KR ) h ⇤i κ R tan ( KR ) � K � 2 ie 2 σ ⇥ κ R tan ( KR ) + K h ⇤i , 4 p κ R ⇥ ⇤ e � A e A ⇤ + ϑ e σ A B 0 = ϑ ⇤ e � σ A ⇥ ⇥ ⇤ κ R sin ( KR ) � K cos ( KR ) κ R sin ( KR ) + K cos ( KR ) , 4 p κ R 4 p κ R = ϑ ⇤ e σ A cos ( KR ) h ⇤i κ R tan ( KR ) � K + 2 ie 2 σ ⇥ κ R tan ( KR ) + K . 4 p κ R This&implies&that&| A ′| 2 &=&| B ′| 2 &! For& B ′&=&0,&the&real&and&imaginary&parts&must&vanish&separately: setting K = 0 , i.e. , E = � V 0 . κ R tan ( KR ) � K = 0 κ R tan ( KR ) + K = 0, and 9

  10. Q 
 II WKB: α -Decay M 
 Gamow’s Simple Model Extra! Consider&the&amplitude&of&the& α )decay&component: A 0 = ϑ e σ A cos ( KR ) h ⇤i κ R tan ( KR ) � K � 2 ie 2 σ ⇥ κ R tan ( KR ) + K , 4 p κ R ⇤ e � σ A ⇥ e σ A ⇥ This&stems&from&the&wave)function&within&the&barrier ⇤ u II ( r ) = C e � σ b d r κ ( r ) + D e σ e � R r R r b d r κ ( r ) . e p p κ ( r ) κ ( r ) …where&the& C )term&is&exponentially&suppressed&by& e –σ . This &is&what&allows&the& approximation ,&which&produces A 0 ⇡ ϑ e σ AK cos ( KR ) . 2 p κ R and&is&the&oft)quoted&result&[Gamow,&1928] …and&which&turns&out&to&agree&with&experiments& very2well ! 10

  11. Q 
 II WKB: α -Decay M 
 Gamow’s Simple Model Extra! | | With&this& approximation , hK 2 | A 0 | e � 2 σ cos 2 ( KR ) h | A 0 | λ = 4 π ¯ ⇡ 4 π ¯ , m α m α κ R …and Z b r r 2 Ze 0 2 2 m α σ = R d r � E , h 2 r ¯ s Z b r 2 m α E b = R d r r � 1, h 2 ¯ s r r r  � 2 m α E R R 1 � R p ⇡ � � ⇡ = b arccos , b � h 2 b b ¯ r p m α E R 5 1 p p 8 m α E b R + 1 2 m α E R 3 / b + + . . . h σ ⇡ π 2 m α E b � p ¯ 2 3 b 3 10 2 R / b &≪&1 r r r 11

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend