wino contribution to r k anomalies with r parity violation
play

Wino contribution to R K ( ) anomalies with R -parity violation - PowerPoint PPT Presentation

Wino contribution to R K ( ) anomalies with R -parity violation Kevin Earl , Thomas Gr egoire arXiv: 1805.xxxxx Carleton University May 7, 2018 Pheno 2018 1 Outline 1. Motivation 2. Calculations 3. Most important constraints 4.


  1. Wino contribution to R K ( ∗ ) anomalies with R -parity violation Kevin Earl , Thomas Gr´ egoire arXiv: 1805.xxxxx Carleton University May 7, 2018 Pheno 2018 1

  2. Outline 1. Motivation 2. Calculations 3. Most important constraints 4. Results 2

  3. Motivation R K ( ∗ ) anomalies � consider ratio of branching ratios R K ( ∗ ) R K ( ∗ ) = Br( B → K ( ∗ ) µµ ) Br( B → K ( ∗ ) ee ) � Standard Model predictions R SM R SM K [1 , 6] = 1 . 00 ± 0 . 01 and K ∗ [1 . 1 , 6] = 1 . 00 ± 0 . 01 � current experimental values R exp K [1 , 6] = 0 . 745 +0 . 097 R exp K ∗ [1 . 1 , 6] = 0 . 685 +0 . 122 and − 0 . 082 − 0 . 083 � each represent ∼ 2 . 6 σ deviations from the Standard Model � numbers from Capdevila, Crivellin, Descotes-Genon, Matias, Virto ‘17 3

  4. Motivation Multiple b → s µµ anomalies � other observables related to b → s µµ exhibiting anomalous behaviour � includes things like angular variables P 1 , P ′ 4 , 5 , 6 , 8 , ... � one way to explain anomalies is to generate negative contributions to C µ LL defined by H eff = − 4 G F α 4 π C µ µγ α P L µ ) √ V tb V ∗ LL (¯ s γ α P L b )(¯ ts 2 � Capdevila, Crivellin, Descotes-Genon, Matias, Virto ‘17 give preferred 2 σ region − 1 . 76 < C µ LL < − 0 . 74 � see also Altmannshofer, Niehoff, Stangl, Straub ‘17 4

  5. Calculations R -parity violating superpotential R p = 1 2 λ LLE c + λ ′ LQD c + 1 2 λ ′′ U c D c D c + ǫ H u L W ✚ � focus on λ ′ interactions � work in the super-CKM basis ν i d Lj ¯ d Lk + ˜ d Lj ν i ¯ d Lk + ˜ L ⊃ − λ ′ d ∗ ijk (˜ Rk ν i d Lj ) + ˜ e Li u Lj ¯ u Lj e Li ¯ d Lk + ˜ λ ′ d ∗ ijk (˜ d Lk + ˜ Rk e Li u Lj ) + h.c. � with ˜ λ ′ ijk = λ ′ ilk V ∗ jl 5

  6. Calculations b → s µµ at tree level s µ u L ˜ b µ ˜ 2 j 2 ˜ λ ′ λ ′∗ 2 j 3 s γ α P R b )(¯ � L eff = − (¯ µγ α P L µ ) 2 m 2 u Lj ˜ � notice right-handed quark current � need to forbid → consider only single value for k � same approach taken in Das, Hati, Kumar, Mahajan ‘17 6

  7. Calculations b → s µµ at loop level: box diagrams ˜ W W − b µ b µ u L ˜ u ν ν ˜ µ s µ s d ˜ d R (a) (b) ν ν ˜ b s b s ˜ ˜ d R d R d d µ µ µ µ u ˜ u L (c) (d) � diagrams (a) and (c) studied in Bauer, Neubert ‘15 � diagrams (a), (c), and (d) studied in Das, Hati, Kumar, Mahajan ‘17 7

  8. Calculations W loop diagrams W b µ u ν µ s ˜ d R � m 2 23 k | 2 = | λ ′ � � C µ ( W ) t LL m 2 8 πα ˜ d Rk 8

  9. Calculations Wino loop diagrams ˜ W − µ b u L ˜ ν ˜ µ s d √ 2 g 2 λ ′ 23 k λ ′∗ � 1 1 C µ ( ˜ W ) 22 k = ν µ − 1 + LL ts m 2 64 π G F α V tb V ∗ x ˜ x ˜ u L − 1 ˜ W ν µ − 2 x 2 u L − 2 x 2 ( x ˜ ν µ + x ˜ u L ) log( x ˜ ν µ ) ( x ˜ u L + x ˜ ν µ ) log( x ˜ u L ) � ˜ ˜ + + ν µ − 1) 2 ( x ˜ u L − 1) 2 ( x ˜ ( x ˜ ν µ − x ˜ u L ) ( x ˜ u L − x ˜ ν µ ) ν µ = m 2 ν µ / m 2 u L = m 2 u L / m 2 � where x ˜ W , x ˜ ˜ ˜ ˜ ˜ W 9

  10. Calculations Four λ ′ loop diagrams ˜ W W − b µ b µ u L ˜ u ν ˜ ν µ s µ s d ˜ d R √ log( m 2 ν i / m 2 2 λ ′ i 3 k λ ′∗ i 2 k λ ′ 2 jk λ ′∗ u L ) � � 1 C µ (4 λ ′ ) 2 jk ˜ ˜ = − + LL m 2 m 2 ν i − m 2 64 π G F α V tb V ∗ ts ˜ ˜ ˜ u L d Rk 10

  11. Calculations b → s µµ at loop level: penguin diagrams √ � m 2 �� 1 2 λ ′ i 33 λ ′∗ � � 4 � − 1 1 C µ ( γ ) = C µ ( γ ) i 23 b = − 3 + log + LL LR m 2 m 2 18 m 2 12 G F V tb V ∗ 3 ts ν i ˜ ν i ˜ ˜ b R � give equal contributions to C e ( γ ) and C e ( γ ) so should not affect R K ( ∗ ) LL LR � but should still affect various angular variables used to make fits � small in our setup 11

  12. Calculations Setup � wino and left-handed up squarks with masses ∼ O (1 TeV) � to enhance wino loop contribution: λ ′ 22 k λ ′ 23 k positive and large � B s − ¯ B s mixing then requires right-handed down squarks and sneutrinos with masses ∼ O (10 TeV) � to make some four λ ′ loop diagrams negative: λ ′ 32 k λ ′ 33 k negative � τ → µ meson then requires us to take k = 3 � only right-handed down squark now relevant is the sbottom 12

  13. Most important constraints τ → µ meson µ µ ˜ u L ˜ d R d u τ τ d u � 2 � 2 � � � 1TeV � 1TeV � ˜ 3 j 1 ˜ − ˜ 31 k ˜ � τ → µρ 0 : � � λ ′ λ ′∗ λ ′ λ ′∗ � < 0 . 019 � 2 j 1 21 k � m ˜ m ˜ u Lj d Rk � 2 � � � 1TeV � ˜ 3 j 2 ˜ � � � τ → µφ : λ ′ λ ′∗ � < 0 . 036 � 2 j 2 � m ˜ u Lj � these two bounds rule out k = 1 or 2 13

  14. Most important constraints τ → µµµ µ µ µ µ γ Z ˜ ˜ ˜ ˜ b R b R b R b R τ µ τ µ u u b u µ µ τ τ ˜ ˜ u L ˜ u L ˜ b R b R µ µ µ µ b u � Current experimental upper limits Br( τ → µµµ ) < 2 . 1 × 10 − 8 (PDG) 14

  15. Most important constraints B s − ¯ B s mixing ν b b s b s ˜ ˜ b R b R ν ν ˜ ˜ s b s b ν b � we follow the UT fit collaboration and define eff | ¯ C B s e 2 i φ Bs = � B 0 s | H full B 0 s � eff | ¯ � B 0 s | H SM B 0 s � with 2 σ bounds 0 . 899 < C B s < 1 . 252 and − 1 . 849 ◦ < φ B s < 1 . 959 ◦ 15

  16. Most important constraints B → K ( ∗ ) ν ¯ ν s ˜ b R ν b ν � define ν = Γ SM+NP ( B → K ( ∗ ) ν ¯ ν ) R B → K ( ∗ ) ν ¯ Γ SM ( B → K ( ∗ ) ν ¯ ν ) � latest Belle search 1702.03224 provides upper limit R B → K ∗ ν ¯ ν < 2 . 7 16

  17. Most important constraints LHC collider constraints p u L ˜ u ∗ ˜ p L q b b u L ˜ ˜ u L u L ˜ µ ˜ τ W � apply constraints from ATLAS search 1710.05544 � search looks for ˜ t pair production with ˜ t → ℓ b ( ℓ = e or µ ) 17

  18. Results Plots 1 and 2 � left figure: λ ′ 323 = − λ ′ 333 = 1 . 4, m ˜ W = 300 GeV, m ˜ u L = m ˜ c L = m ˜ t L = 1 . 3 TeV, m ˜ b R = m ˜ ν µ = m ˜ ν τ = 13 TeV � right figure: masses the same as left figure 18

  19. Results Plots 3 and 4 � parameters not being varied same as in plots 1 and 2 19

  20. Results Neutrino masses � λ ′ couplings generate neutrino masses ˜ ˜ b R b L ν ν b log( m 2 b R / m 2 d Ll ) 3 ˜ ˜ M ν m d 2 16 π 2 λ ′ i 33 λ ′ ij = jl 3 m b ( ˜ LR ) l 3 + ( i ↔ j ) m 2 b R − m 2 ˜ ˜ d Ll � typical RPVMSSM values → M ν 22 ∼ 10 keV, too large m d 2 � impose U (1) R lepton number → ˜ LR forbidden by R -symmetry � m 3 / 2 � � R -symmetry broken by anomaly mediation → M ν 22 ∼ 1eV 1GeV 20

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend