white dwarf
play

White Dwarf stabilized against collapse by degeneracy pressure of - PowerPoint PPT Presentation

White Dwarf stabilized against collapse by degeneracy pressure of electrons radius R , e mass m e , nucleon mass M p , es per nucleon q assume constant density: = NM p V = 4 3 R 3 , V 5 / 3 5 / 3 5 / 3 ( 3 2 Nq ) ( 3 2 Nq ) ( 9 4


  1. White Dwarf stabilized against collapse by degeneracy pressure of electrons radius R , e mass m e , nucleon mass M p , e’s per nucleon q assume constant density: ρ = NM p V = 4 3 π R 3 , V 5 / 3 5 / 3 5 / 3 ( 3 π 2 Nq ) ( 3 π 2 Nq ) ( 9 4 π Nq ) � 2 � 2 2 � 2 = = ( π / 3) 2 / 3 R 2 = E 10 π 2 m e V 2 / 3 10 π 2 m e 15 π m e R 2 G ( ρ 4 3 π r 3 ) 3 π 3 G ρ 2 r 4 dr dE grav = − GM ( r ) ρ 4 π r 2 dr = − 16 dM = − r r 3 π 3 G ρ 2 � R 5 π 3 GN 2 M 2 15 π 3 G ρ 2 R 5 = − 3 E grav = − 16 0 r 4 dr = − 16 p R R 2 − B A E tot = E + E grav = R dE tot = − 2 A R 3 + B R 2 = 0 dR 2 A = BR

  2. White Dwarf � 9 � 5 / 3 4 � 2 2 A 5 = B = R 4 π N q 3 π 3 GN 2 m 2 15 π m e � 9 π � 2 / 3 q 5 / 3 � 2 N 1 / 3 = 7 . 6 × 10 25 m = GM 2 p m e N 1 / 3 4 for a solar mass N ≈ 1 . 2 × 10 57 , R ≈ 7 × 10 6 m � 2 / 3 � 2 / 3 = 1 . 9 × 10 5 eV � 9 π � � 2 � 2 3 π 2 Nq E F = = 4 Nq 2 m e V 2 m e R 2 E rest = m e c 2 = 5 . 11 × 10 5 eV ↑ N ⇒ R ↓ E F ↑ , more relativistic

  3. UltraRelativistic p 2 c 2 + m 2 � e c 4 − m e c 2 ≈ pc E = dE = E k V π 2 k 2 dk = � ck V π 2 k 2 dk � 4 / 3 � k F � 3 π 2 Nq � cV k 3 dk = � c V F = � cV 4 π 2 k 4 = E π 2 4 π 2 V 0 4 / 3 4 π 2 ( 3 π 2 Nq ) � 9 π � 4 / 3 � c � c = = 4 Nq V 1 / 3 3 π R E tot = E + E grav = C R − B R C > B expand, C < B contract

  4. Chandrasekhar Limit C B = � 9 π � 4 / 3 � c 3 5 π 3 GN 2 c M 2 4 N c q = p 3 π √ � � c � 3 / 2 q 2 N c = 15 p ≈ 2 × 10 57 5 π G M 2 16 1.7 solar masses

  5. Chandrasekhar Limit non-relativistic relativistic

  6. Subramanyan Chandrasekhar 1983 Nobel Prize

  7. White Dwarf

  8. Neutron Star from core collapse supernovae p + + e − → n + ν m e → m n , q = 1 N ∼ 10 57 , R ∼ 12 km � 2 � 2 � 9 π E F = = 56 MeV 2 m n R 2 4 E rest = m n c 2 = 940 MeV non-relativistic

  9. Band Structure V ( x + a ) = V ( x ) Bloch’ s Theorem ψ ( x + a ) = e iKa ψ ( x ) K = 2 π j Na

  10. Band Structure 0 < x < a ψ ( x ) = A sin( kx ) + B cos( kx ) − a < x < 0 ψ ( x ) = e − iKa [ A sin k ( x + a ) + B cos k ( x + a )]

  11. Band Structure ψ (0 + ) = ψ (0 − ) � 0 + ψ ′ (0 + ) − ψ ′ (0 − ) = 2 m V ( x ) ψ ( x ) dx � 2 0 − ψ ′ (0 + ) − ψ ′ (0 − ) = 2 m � 2 α B cos( Ka ) = cos( ka ) + m α � 2 k sin( ka ) K = n π

  12. Band Structure cos( Ka ) = cos( ka ) + m α � 2 k sin( ka ) 3 2 1 1 2 3 4 5 -1 -2 -3 band edge: K = n π

  13. Bottom of Band K = n π Structure 1.5 1.5 1 1 0.5 0.5 -0.2 0.2 0.4 0.6 0.8 1 1.2 -0.2 0.2 0.4 0.6 0.8 1 1.2 -0.5 1st band -0.5 2nd band -1 -1 -1.5 -1.5 1.5 1 0.5 3rd band -0.2 0.2 0.4 0.6 0.8 1 1.2 -0.5 -1 -1.5

  14. Band Structure 3 2 1 1 2 3 4 5 -1 -2 -3 cos( Ka ) = cos( ka ) + m α � 2 k sin( ka )

  15. Band Structure 3 2 1 1 2 3 4 5 -1 -2 -3 cos( Ka ) = cos( ka ) + m α � 2 k sin( ka ) insulator

  16. Band Structure 3 2 1 1 2 3 4 5 -1 -2 -3 cos( Ka ) = cos( ka ) + m α � 2 k sin( ka ) insulator conductor

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend