high redshift dwarf galaxies with elt mosaic
play

High redshift dwarf galaxies with ELT/MOSAIC Arjan Bik (Stockholm - PowerPoint PPT Presentation

High redshift dwarf galaxies with ELT/MOSAIC Arjan Bik (Stockholm University) Gran stlin (SU), Emil Rivera-Thorsen (Oslo), Veronica Menacho (SU) Dwarf Galaxies -CDM cosmology: Hierarchical model of galaxy formation: Small


  1. High redshift dwarf galaxies with ELT/MOSAIC Arjan Bik (Stockholm University) Göran Östlin (SU), Emil Rivera-Thorsen (Oslo), Veronica Menacho (SU)

  2. Dwarf Galaxies • Λ -CDM cosmology: Hierarchical model of galaxy formation: • Small structures formed and merge to larger galaxies (White & Rees 1978). • Many more dwarf galaxies in the early universe. Steepening of the galaxy luminosity function at high z (e.g. Mortlock et al. 2015). • Candidates for re-ionization of the universe (Bouwens et al, 2016). • At high redshift: mostly star forming

  3. Blue Compact (Dwarf) Galaxies • Use local analogues of high-redshift dwarf galaxies. • Strongly star forming, dozens of super star clusters • within a few 100 Mpc • HST Lya imaging & BB imaging, COS UV spectroscopy (LARS: Östlin et al, 2014, Hayes et al, 2014) • VLT/MUSE integral field spectroscopy Optical Lya, UV, Ha UV, optical, Ha

  4. Blue Compact Galaxies MASS DISTANCE SFR Haro 11 12+LOG(O/H) (MPC) (M sun ) (M SUN /YR) 9x10 9 stars HARO 11 88 8.1-8.3 22.0 5.1x10 8 HI 4x10 9 stars 7.9 3.2 ESO 338 37.5 ESO 338-IG04 1.4x10 9 HI 7X10 7 stars SBS 0335 54 7.3 1.3 4.2X10 8 HI References: Östlin et al, 1998, Östlin et al, 2001, Bergvall & Östlin 2002, Cannon et al, 2004, Guseva et al, 2012, Adamo et al, 2010; Bergvall SBS-0335-052E 2006, Pardy et al, 2016, Guseva et al, 2012, Ekta et al, 2009

  5. Blue Compact Galaxies MASS DISTANCE SFR Haro 11 12+LOG(O/H) (MPC) (M sun ) (M SUN /YR) 9x10 9 stars HARO 11 88 8.1-8.3 22.0 5.1x10 8 HI 4x10 9 stars 7.9 3.2 ESO 338 37.5 ESO 338-IG04 1.4x10 9 HI 7X10 7 stars SBS 0335 54 7.3 1.3 4.2X10 8 HI References: Östlin et al, 1998, Östlin et al, 2001, Bergvall & Östlin 2002, Cannon et al, 2004, Guseva et al, 2012, Adamo et al, 2010; Bergvall SBS-0335-052E 2006, Pardy et al, 2016, Guseva et al, 2012, Ekta et al, 2009

  6. MUSE @z~0 • Spatially resolved kinematics: galaxy scale outflow • No ordered rotation: outflows, mergers ect… ESO 338-IG04 SBS-0335-052E Bik et al, 2015 Herenz et al, 2017

  7. MUSE @z~0 • Ionisation mapping [OIII]/Halpha: • Ionisation cones where LyC is likely to escape • Halos are density bound, LyC could leak out ESO338 Haro 11 Bik et al, 2018 Menacho et al, submitted

  8. • HDM mode: small IFUs with a spatial sampling of 0.08”/ pixel, R=5000 of selected galaxies • HMM mode: integrated spectra of many faint, high z dwarf galaxies • We expect 1 Haro 11 type galaxy per 0.1 z bin in a MOSAIC FOV. • Many more lower mass galaxies: ideal for MOSAIC • Websim/COMPASS (Puech et al., 2016) simulations to predict observables with ELT/MOSAIC

  9. • Can we spatially resolve the halos of high-z BCDs? • Kinematics • Ionization parameter • abundances • 0.45 - 1.8 micron: • Further and deeper: integrated • Halpha until z=1.7 light with the HMM • [OIII] until z=2.4 • MUSE data as input • Lya from z=3

  10. Haro 11 with MOSAIC in 10h Halpha, z=0 z=0.5 z=1.0 1“=0.4 kpc 1“=6.3 kpc 1“=8.7 kpc z=1.5 [OIII], z=2.0 [OIII], z=2.4 1“=8.6 kpc 1“=8.3 kpc 1“=7.9 kpc

  11. ESO 338 & SBS0335 Halpha, z=0 Halpha, z=1.0 [OIII], z=2.4 1“=0.2 kpc 1“=8.7 kpc 1“=7.9 kpc Halpha, z=1.0 Halpha, z=1.5 1“=0.03 kpc 1“=8.7 kpc 1“=8.6 kpc

  12. Kinematics Haro 11 Halpha, z=0.02 Halpha, z=0.5

  13. Kinematics ESO 338-IG04 v_Halpha, z=0 v_Halpha, z=0.5 v_Halpha, z=1.5 • Spatially resolved kinematics: galaxy scale outflow • No ordered rotation: outflows, mergers ect… • At high z: not that clear! Large structures will be visible.

  14. Ionisation mapping OIII/Halpha, z=0.02 OIII/Hbeta, z=1.0 Haro 11

  15. Ionisation mapping OIII/Halpha, z=0.02 OIII/Hbeta, z=1.0 Haro 11 PSF matching!! • OIII/SII (Pelligrini et al, 2012)

  16. Abundances ESO 338-IG04 12+log(O/H) N/O Einy, Bik et al, in prep • With MUSE we can make 2D metallicity and N/O ratio maps —> trace assembly history, feedback by massive stars. • ELT/MOSAIC will enable this at high redshift.

  17. Integrated light with HMM • High-multiplex mode: reach fainter galaxies (lower masses) • Metallicities (mass-metallicity relation) • global ionization, HeII, OIII/OII • rest frame UV stellar absorption features: what are the massive star properties at z=3 and beyond? • neutral ISM absorption lines.

  18. Integrated light with HMM • High-multiplex mode: reach fainter galaxies (lower masses) • Metallicities (mass-metallicity relation) • global ionization, HeII, OIII/OII • rest frame UV stellar absorption features: what are the massive star properties at z=3 and beyond? • neutral ISM absorption lines. Wofford et al, 2011

  19. Integrated light with HMM • High-multiplex mode: reach fainter galaxies (lower masses) • Metallicities (mass-metallicity relation) • global ionization, HeII, OIII/OII • rest frame UV stellar absorption features: what are the massive star properties at z=3 and beyond? • neutral ISM absorption lines. Wofford et al, 2011

  20. Summary • The HDM mode of MOSAIC enables spatially resolved studies of low-mass starbursts to z ~ 2. • Spatially resolved kinematics: study in detail galaxy scale outflows. • Ionisation mapping: what is f_esc of LyC photons at z=1-2? (does it increase?) • Make spatially resolved abundance maps • HMM mode: fainter galaxies, absorption lines

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend