which graph properties are characterized by the spectrum
play

Which graph properties are characterized by the spectrum? Willem H - PowerPoint PPT Presentation

Which graph properties are characterized by the spectrum? Willem H Haemers Tilburg University The Netherlands Which graph properties are characterized by the spectrum? Willem H Haemers Tilburg University The Netherlands Celebrating 80


  1. Which graph properties are characterized by the spectrum? Willem H Haemers Tilburg University The Netherlands

  2. Which graph properties are characterized by the spectrum? Willem H Haemers Tilburg University The Netherlands Celebrating 80 years Reza Khosrovshahi

  3. 0 1 0 0 0 0 0 0   ✉ 1 0 1 0 1 0 1 0     0 1 0 1 0 0 0 1   ✉   ✟ ❍❍❍❍❍❍❍ 0 0 1 0 1 0 0 0 ✟   ✟   ✟ 0 1 0 1 0 1 0 0 ✟   ✟   ✟ ✟ ❍ ✉ ✉ ✉ ✉ ✉  0 0 0 0 1 0 1 0  ❍ ✟ ❍ ✟✟✟✟✟✟✟ ❍   ❍   0 1 0 0 0 1 0 1 ❍ ❍   ❍ ❍ 0 0 1 0 0 0 1 0 ✉ adjacency spectrum √ √ √ √ {− 1 − 3 , − 1 , − 1 , 1 − 3 , − 1 + 3 , 1 , 1 , 1 + 3 }

  4. 0 1 0 0 0 0 0 0   1 2 3 4 ✉ ✉ ✉ ✉ 1 0 1 0 1 0 1 0   ✑ ✁ ❆ ❆   ✑ 0 1 0 1 0 0 0 1 ✁ ❆ ❆ ✑   ✑   ✁ ❆ ❆ 0 0 1 0 1 0 0 0 ✑   ✁ ✑ ❆ ❆   ✑ 0 1 0 1 0 1 0 0   ✁ ❆ ❆ ✑   ✁ ✑ ❆ ❆  0 0 0 0 1 0 1 0  ✑ ✉ ✉ ✉ ✉ ✁ ❆ ❆   ✁ ✑ ❆ ❆   0 1 0 0 0 1 0 1   5 6 7 8 0 0 1 0 0 0 1 0

  5. 0 1 0 0 0 0 0 0   1 2 3 4 ✉ ✉ ✉ ✉ 1 0 1 0 1 0 1 0   ✑ ✁ ❆ ❆   ✑ 0 1 0 1 0 0 0 1 ✁ ❆ ❆ ✑   ✑   ✁ ❆ ❆ 0 0 1 0 1 0 0 0 ✑   ✁ ✑ ❆ ❆   ✑ 0 1 0 1 0 1 0 0   ✁ ❆ ❆ ✑   ✁ ✑ ❆ ❆  0 0 0 0 1 0 1 0  ✑ ✉ ✉ ✉ ✉ ✁ ❆ ❆   ✁ ✑ ❆ ❆   0 1 0 0 0 1 0 1   5 6 7 8 0 0 1 0 0 0 1 0 adjacency spectrum √ √ √ √ {− 1 − 3 , − 1 , − 1 , 1 − 3 , − 1 + 3 , 1 , 1 , 1 + 3 }

  6. adjacency spectrum √ √ √ √ {− 1 − 3 , − 1 , − 1 , 1 − 3 , − 1 + 3 , 1 , 1 , 1 + 3 }

  7. adjacency spectrum √ √ √ √ {− 1 − 3 , − 1 , − 1 , 1 − 3 , − 1 + 3 , 1 , 1 , 1 + 3 } Theorem The adjacency spectrum is symmetric around 0 if and only if the graph is bipartite

  8. adjacency spectrum √ √ √ √ {− 1 − 3 , − 1 , − 1 , 1 − 3 , − 1 + 3 , 1 , 1 , 1 + 3 } Theorem (Coulson, Rushbrooke 1940, Sachs 1966) The adjacency spectrum is symmetric around 0 if and only if the graph is bipartite

  9. 0 0 0 0 1 0 0 0   1 3 5 7 ✉ ✉ ✉ ✉ 0 0 0 0 1 1 0 1 ✑ ✁ ❅ � ✁ ✁   ✑   ✁ ❅ � ✁ ✑ ✁ 0 0 0 0 1 1 1 0   ✑ ✁ � ❅ ✁ ✁   ✑ 0 0 0 0 1 0 1 1   ✁ � ✑ ✁ ❅ ✁   ✑ 1 1 1 1 0 0 0 0 ✁ � ✁ ❅ ✁   ✑   ✁ � ✑ ✁ ✁ ❅ 0 1 1 0 0 0 0 0   ✑ ✉ ✉ ✉ ✉ ✁ � ✁ ✁ ❅   ✑ ✁ � ✁ ✁ ❅ 0 0 1 1 0 0 0 0   2 4 6 8 0 1 0 1 0 0 0 0 adjacency spectrum √ √ √ √ {− 1 − 3 , − 1 , − 1 , 1 − 3 , − 1 + 3 , 1 , 1 , 1 + 3 }

  10. λ 1 ≥ . . . ≥ λ n are the adjacency eigenvalues of G Theorem n n � � G has n vertices, 1 λ 2 i edges and 1 λ 3 i triangles 2 6 i =1 i =1 Theorem G is regular if and only if λ 1 equals the average degree

  11. λ 1 ≥ . . . ≥ λ n are the adjacency eigenvalues of G Theorem n n � � G has n vertices, 1 λ 2 i edges and 1 λ 3 i triangles 2 6 i =1 i =1 Theorem n � G is regular if and only if λ 1 equals 1 λ 2 m i n i =1

  12. λ 1 ≥ . . . ≥ λ n are the adjacency eigenvalues of G Theorem n n � � G has n vertices, 1 λ 2 i edges and 1 λ 3 i triangles 2 6 i =1 i =1 Theorem n � G is regular if and only if λ 1 equals 1 λ 2 m i n i =1 Drawback Spectrum does not tell everything

  13. √ √ √ √ {− 1 − 3 , − 1 , − 1 , 1 − 3 , − 1 + 3 , 1 , 1 , 1 + 3 }

  14. √ √ √ √ {− 1 − 3 , − 1 , − 1 , 1 − 3 , − 1 + 3 , 1 , 1 , 1 + 3 } 8 vertices, 10 edges, bipartite

  15. √ √ √ √ {− 1 − 3 , − 1 , − 1 , 1 − 3 , − 1 + 3 , 1 , 1 , 1 + 3 } 8 vertices, 10 edges, bipartite Can the bipartition have parts of unequal size?  0 0 0 0 0  0 0 0 0 0 ✉ ✉ ✉ ✉ ✉     0 0 0 0 0     0 0 0 0 0     0 0 0 0 0     0 0 0     0 0 0   ✉ ✉ ✉ 0 0 0

  16. √ √ √ √ {− 1 − 3 , − 1 , − 1 , 1 − 3 , − 1 + 3 , 1 , 1 , 1 + 3 } 8 vertices, 10 edges, bipartite Can the bipartition have parts of unequal size? NO!  0 0 0 0 0  0 0 0 0 0 ✉ ✉ ✉ ✉ ✉     0 0 0 0 0     0 0 0 0 0     0 0 0 0 0     0 0 0     0 0 0   ✉ ✉ ✉ 0 0 0

  17. √ √ √ √ {− 1 − 3 , − 1 , − 1 , 1 − 3 , − 1 + 3 , 1 , 1 , 1 + 3 } 8 vertices, 10 edges, bipartite with parts of size 4 0 0 0 0   0 0 0 0 ✉ ✉ ✉ ✉    0 0 0 0      0 0 0 0     0 0 0 0     0 0 0 0     0 0 0 0   ✉ ✉ ✉ ✉ 0 0 0 0

  18. √ √ √ √ {− 1 − 3 , − 1 , − 1 , 1 − 3 , − 1 + 3 , 1 , 1 , 1 + 3 } 8 vertices, 10 edges, bipartite with parts of size 4 0 0 0 0 1 1 1 1   ✉ ✉ ✉ ✉ ◗◗◗◗◗◗◗◗◗◗ ✑ 0 0 0 0 1 0 1 0 ❅ ❆ ✁ ❆ � ❆ �   ✑  0 0 0 0 1 0 0 1  ❆ ❅ ✁ ❆ � ❆ ✑ �   ✑ ❆ ❅ ✁ � ❆ � ❆   ✑ 0 0 0 0 1 1 0 0   ❆ ✁ ❅ � ✑ ❆ � ❆   ✑ 1 1 1 1 0 0 0 0 ✁ ❆ � ❅ ❆ � ❆   ✑   ✁ � ✑ ❆ � ❅ ❆ ❆ 1 0 0 1 0 0 0 0   ✑ ✉ ✁ � ❆ ✉ � ❅ ❆ ✉ ❆ ✉ ✁ � ✑ ❆ � ❅ ❆ ◗ ❆   1 1 0 0 0 0 0 0   1 0 1 0 0 0 0 0 degree sequence (2 , 2 , 2 , 2 , 2 , 2 , 4 , 4)

  19. √ √ √ √ {− 1 − 3 , − 1 , − 1 , 1 − 3 , − 1 + 3 , 1 , 1 , 1 + 3 } 8 vertices, 10 edges, bipartite with parts of size 4 0 0 0 0 1 0 0 0   ✉ ✉ ✉ ✉ ✑ 0 0 0 0 1 1 0 1 ✁ ❅ � ✁ ✁   ✑  0 0 0 0 1 1 1 0  ✁ ❅ � ✁ ✑ ✁   ✑ ✁ � ❅ ✁ ✁   ✑ 0 0 0 0 1 0 1 1   ✁ � ✑ ✁ ❅ ✁   ✑ 1 1 1 1 0 0 0 0 ✁ � ✁ ❅ ✁   ✑   ✁ � ✑ ✁ ✁ ❅ 0 1 1 0 0 0 0 0   ✑ ✉ ✁ � ✉ ✁ ✉ ✁ ❅ ✉ ✁ ✑ � ✁ ✁ ❅   0 0 1 1 0 0 0 0   0 1 0 1 0 0 0 0 degree sequence (1 , 2 , 2 , 2 , 3 , 3 , 3 , 4)

  20. Observation The degree sequence of a graph is not determined by the adjacency spectrum Question Are the sizes of the two parts of a bipartite graph determined by the adjacency spectrum?

  21. Observation The degree sequence of a graph is not determined by the adjacency spectrum Question Are the sizes of the two parts of a bipartite graph determined by the adjacency spectrum? General answer is NO!

  22. ✉ ✉ ✉ ✉ ✉ ✉ ✉ ◗ ✑ ◗ ✑ ◗ ✑✑✑✑✑ ◗ ✑✑✑✑✑ ❆ ✁ ❆ ✁ ◗ ❆ ✁ ❆ ◗ ✁ ◗ ◗ ❆ ✁ ❆ ✁ ◗ ◗ ✉ ✉ ✉ ◗ ❆ ✁ ❆ ◗ ✁ both graphs have adjacency spectrum {− 2 , 0 , 0 , 0 , 2 }

  23. Problem (Zwierzy´ nski 2006) Can one determine the size of a bipartition given only the spectrum of a connected bipartite graph?

  24. Problem (Zwierzy´ nski 2006) Can one determine the size of a bipartition given only the spectrum of a connected bipartite graph? Theorem (van Dam, WHH 2008) NO!

  25. ✉ ✉ ✉ ✉ ✉ ✉ ✉ ◗ ✑ ◗ ✑ ◗ ✑✑✑✑✑ ◗ ✑✑✑✑✑ ❆ ✁ ❆ ✁ ◗ ❆ ✁ ❆ ◗ ✁ ◗ ◗ ❆ ✁ ❆ ✁ ◗ ◗ ✉ ✉ ✉ ◗ ❆ ✁ ❆ ◗ ✁ NOT determined by the adjacency spectrum are: • being connected • being a tree • the girth

  26. Laplacian (matrix)  3 -1 -1 -1 0 0  ✉ � ❅ -1 2 0 0 0 -1 � ❅   �   ❅ -1 0 2 0 0 -1 ✉ ✉ ❅ ✉ ✉ �     ❅ � -1 0 0 3 -1 -1 �   ❅ �   ❅ 0 0 0 -1 1 0 ✉ ❅�   0 -1 -1 -1 0 3 Laplacian spectrum √ √ { 0 , 3 − 5 , 2 , 3 , 3 , 3+ 5 }

  27. 0 = µ 1 ≤ . . . ≤ µ n are the Laplacian eigenvalues of G Theorem n n � � • G has 1 µ i edges, and 1 µ i spanning trees 2 n i =2 i =2 • the number of connected components of G equals the multiplicity of 0 Theorem n n � � µ i ) 2 G is regular if and only if n µ i ( µ i − 1) = ( i =2 i =2

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend