where ics are in the ieee 10 000 members 70 chapters
play

Where ICs are in the IEEE 10,000 members 70+ chapters located - PowerPoint PPT Presentation

Where ICs are in the IEEE 10,000 members 70+ chapters located worldwide Foster information exchange in electronics Distinguished Lectures Online tutorials International and regional conferences Journals &


  1. “Where ICs are in the IEEE”

  2.  10,000 members  70+ chapters located worldwide  Foster information exchange in electronics ◦ Distinguished Lectures ◦ Online tutorials ◦ International and regional conferences ◦ Journals & magazines  Part of IEEE with 400,000 members

  3. Publications & Conferences Journ rnal of S Solid-State ate Circuits (JSSC)  #1 technical source for circuits  Most downloaded IEEE journal articles  Top cited reference in US Patent applications Solid-Sate Sate Circuits ts Magazin ine  Discusses historical milestones, trends and future developments  Articles by leaders from industry and academia in a tutorial and editorial style Intern rnati tional onal and Regio ional nal Conferen rence ces  4 International Sponsored Conferences  Technically co-sponsored conferences

  4. Cha hapte pter r & DL DL Eve vent nts Annual SSCS DL Tour Swedish SOC Conference (May 2011) Individual DL Presentations SSCS-Italy: International Analog VLSI Workshop (September 2011)

  5. Knowledge ... staying current with the fast changing world of solid-state circuit technology Community … local and global activities, unparalleled networking opportunities, chapter activities, electing IEEE SSCS leadership Profession … empowering members to build and own their careers, mentoring, making the world a better place Recognition … Best Paper Awards, IEEE Fellow & Field Awards, Student Travel Grants & Pre-doctoral Achievement Award …

  6.  Organize chapter events  Participate in & organize conferences  As an author  As a reviewer  Compete in a student design contest  Nominate senior members & fellows

  7. Energy Limits in A/D Converters August 29, 2012 Boris Murmann murmann@stanford.edu

  8. A/D Converter ca. 1954 P/f s = 500W/50kS/s = 10mJ http://www.analog.com/library/analogDialogue/archives/39-06/data_conversion_handbook.html 8

  9. ADC Landscape in 2004 -6 10 -8 10 P/f snyq [J] -10 10 -12 10 ISSCC & VLSI 1997-2004 20 30 40 50 60 70 80 90 100 110 SNDR [dB] B. Murmann, "ADC Performance Survey 1997-2012," [Online]. Available: http://www.stanford.edu/~murmann/adcsurvey.html 9

  10. ADC Landscape in 2012 -6 10 -8 10 P/f snyq [J] -10 10 -12 10 ISSCC & VLSI 1997-2004 ISSCC & VLSI 2005-2012 20 30 40 50 60 70 80 90 100 110 SNDR [dB] B. Murmann, "ADC Performance Survey 1997-2012," [Online]. Available: http://www.stanford.edu/~murmann/adcsurvey.html 10

  11. Observation • ADCs have become substantially “greener” over the years • Questions – How much more improvement can we hope for? – What are the trends and limits for today’s popular architectures? – Can we benefit from further process technology scaling? 11

  12. Outline • Fundamental limit • General trend analysis • Architecture-specific analysis – Flash – Pipeline – SAR – Delta-Sigma • Summary 12

  13. Fundamental Limit Brickwall  1 LPF at f snyq /2  2 C Class-B 2   1 V FS     f 2 2     s SNR P CV f V V V min FS s DD DD FS kT f snyq C OSR P    min E 8kT SNR min f snyq [Hosticka, Proc. IEEE 1985; Vittoz, ISCAS 1990] 13

  14. ADC Landscape in 2004 -6 10 -8 10 Energy [J] -10 10 4x/6dB -12 10 ISSCC & VLSI 1997-2004 -14 10 E min 20 30 40 50 60 70 80 90 100 110 SNDR [dB] 14

  15. ADC Landscape in 2012 -6 10 -8 10 Energy [J] -10 10 4x/6dB -12 10 ISSCC & VLSI 1997-2004 ISSCC & VLSI 2005-2012 -14 10 E min 20 30 40 50 60 70 80 90 100 110 SNDR [dB] 15

  16. Normalized Plot 8 10 ISSCC & VLSI 1997-2004 ISSCC & VLSI 2005-2012 6 10 E ADC /E min 4 10 2 10 ~10,000 ~100  100x in 8 years  3-4x in 8 years 0 10 20 30 40 50 60 70 80 90 100 110 SNDR [dB] 16

  17. Aside: Figure of Merit Considerations • There are (at least) two widely used ADC figures of merit (FOM) used in literature • Walden FOM – Energy increases 2x per bit (ENOB) – Empirical Power  FOM ENOB  2 f snyq • Schreier FOM – Energy increases 4x per bit (DR) – Thermal   BW   FOM DR(dB) 10log   – Ignores distortion   P 17

  18. FOM Lines -6 10 -8 10 Energy [J] -10 10 -12 ISSCC & VLSI 1997-2004 10 ISSCC & VLSI 2005-2012 E min -14 Walden FOM = 10fJ/conv-step 10 Schreier FOM = 170dB 20 30 40 50 60 70 80 90 100 110 SNDR [dB] • Best to use thermal FOM for designs above 60dB 18

  19. Walden FOM vs. Speed 1.E+05 1.E+04 FOM W [fJ/conv-step] 1.E+03 1.E+02 1.E+01 ISSCC 2012 VLSI 2012 ISSCC 1997-2011 VLSI 1997-2011 1.E+00 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09 1.E+10 1.E+11 f snyq [Hz] • FOM “corner” around 100…300MHz 19

  20. Schreier FOM vs. Speed 180 ISSCC 2012 VLSI 2012 170 ISSCC 1997-2011 VLSI 1997-2011 160 150 FOM S [dB] 140 130 120 110 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09 1.E+10 1.E+11 f snyq [Hz] 20

  21. Energy by Architecture -6 10 -8 10 P/f s [J] -10 10 Flash Pipeline SAR  -12 Other 10 FOM=100fJ/conv-step FOM=10fJ/conv-step 20 30 40 50 60 70 80 90 100 110 SNDR [dB] 21

  22. Flash ADC 2 B -1 D out V in E comp E enc 2 B -1 Decision Levels • High Speed – Limited by single comparator plus encoding logic • High complexity, high input capacitance – Typically use for resolutions up to 6 bits 22

  23. Encoder Assume a Wallace encoder (“ones counter”) • • Uses ~2 B –B full adders, equivalent to ~ 5∙(2 B – B) gates       B E 5 2 B E enc gate 23

  24. Matching-Limited Comparator 2 A C    2 2 VT c A Offset VOS VT WL C ox Required 2 A C   VT ox C C capacitance  c cmin 2 C c C c VOS V Confidence 1   inpp 3 interval VOS B Simple Dynamic Latch 4 2 3dB penalty Assuming C cmin = 5fF  SNR[dB] 3  for wires, clocking, etc. accounts for B 6 “DNL noise”   2   V          2B 2 2 B DD E 144 2 C A C V 2 1   comp ox VT cmin DD 2 V   inpp Matching Energy 24

  25. Typical Process Parameters Process A VT C ox A 2 C ox /kT E gate [fJ] [mV- m m] [fF/ m m 2 ] VT [nm] 250 8 9 139 80 130 4 14 54 10 65 3 17 37 3 32 1.5 43 23 1.5 25

  26. Comparison to State-of-the-Art -6 10 Flash ISSCC & VLSI 1997-2012 E flash65nm -8 10 E comp65nm E min [6] -10 10 [5] P/f snyq [J] [2] [4] [3] [1] -12 10 -14 10 -16 10 15 20 25 30 35 40 SNDR [dB] [1] Van der Plas, ISSCC 2006 [4] Daly, ISSCC 2008 [2] El-Chammas, VLSI 2010 [5] Chen, VLSI 2008 [3] Verbruggen, VLSI 2008 [6] Geelen, ISSCC 2001 (!) 26

  27. Impact of Scaling -6 10 Flash ISSCC & VLSI 1997-2012 E flash250nm E flash130nm -8 10 E flash65nm E flash32nm P/f snyq [J] E min -10 10 -12 10 -14 10 15 20 25 30 35 40 SNDR [dB] 27

  28. Impact of Calibration (1) -6 10 Flash ISSCC & VLSI 1997-2012 E comp65nm -8 10 E comp65nm,cal E min -10 10 P/f snyq [J] -12 10 -14 10 -16 10 15 20 25 30 35 40 SNDR [dB] Important to realize • V 1   inpp that only comparator B cal  3 3 4 2  VOS B B power reduces cal 28

  29. Impact of Calibration (2) -6 10 Flash ISSCC & VLSI 1997-2012 F lash65nm -8 10 F lash65nm,cal E min -10 10 P/f snyq [J] -12 10 -14 10 -16 10 15 20 25 30 35 40 SNDR [dB] 29

  30. Ways to Approach E min (1) • Offset calibrate each comparator – Using trim-DACs [El-Chammas, VLSI 2010] 8 8 8 4 2 1 V outn V outp Decoder   D calp CAL V refn V inp V inn V refp CAL D caln  V lo V hi V lo V hi 30

  31. Ways to Approach E min (2) • Find ways to reduce clock power • Example: resonant clocking (54% below CV 2 ) [Ma, ESSCIRC 2011] 31

  32. Raison D'Être for Architectures Other than Flash… -6 10 -8 10 P/f s [J] -10 10 Flash Pipeline SAR  -12 Other 10 E flash65nm E flash32nm E min -14 10 20 30 40 50 60 70 80 90 100 110 SNDR [dB] 32

  33. Pipeline ADC Align & Combine Bits D out V in SHA Stage 1 Stage n-1 Stage n Conversion occurs along • a cascade of stages V in1 V res1  G 1 Each stage performs a G 1 • coarse quantization and - computes its error (V res ) ADC DAC Stages operate • D 1 concurrently – Throughput is set by the speed of one single stage 33

  34. Pipelining – A Very Old Idea 34

  35. Typical Stage Implementation [Abo, 1999] Power goes here 35

  36. Simplified Model for Energy Calculation C/2 m C C/2 C/4 2 2 2 2 MSB LSB • Considering the most basic case – Stage gain = 2  1 bit resolution per stage – Capacitances scaled down by a factor of two from stage to stage (first order optimum) – No front-end track-and-hold – Neglect comparator energy 36

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend