when is pure bundling optimal
play

When Is Pure Bundling Optimal? Nima Haghpanah (Penn State) Joint - PowerPoint PPT Presentation

When Is Pure Bundling Optimal? Nima Haghpanah (Penn State) Joint work with Jason Hartline (Northwestern) October 26, 2018 1 / 19 Multi-product Monopolists Optimal Selling Strategy? 2 / 19 Multi-product Monopolists Optimal Selling


  1. A Special Case: Types “on a Path” Ratio (relative utility) r ( v gb ) := v 1 / v gb Proposition Given “Path” V 1 , PB is optimal ∀ µ iff r monotone nondecreasing. v 1 r Two types: 1 r ′ ≥ r : PB optimal ( ∀ µ ) r ′ 2 r ′ < r : PB not optimal ( ∃ µ ) ◮ v gb = Pr [ v ′ ] v ′ v gb gb v ′ v gb gb 7 / 19

  2. A Special Case: Types “on a Path” Ratio (relative utility) r ( v gb ) := v 1 / v gb Proposition Given “Path” V 1 , PB is optimal ∀ µ iff r monotone nondecreasing. v 1 v gb 7 / 19

  3. A Special Case: Types “on a Path” Ratio (relative utility) r ( v gb ) := v 1 / v gb Proposition Given “Path” V 1 , PB is optimal ∀ µ iff r monotone nondecreasing. v 1 ˆ r Stokey’79, Acquisti and Varian’05: ◮ PB optimal if r constant v gb 7 / 19

  4. Main Theorem (Two Identical Products) Ratio (relative utility) r := v 1 / v gb v 1 v 1 r v gb v gb 8 / 19

  5. Main Theorem (Two Identical Products) Ratio (relative utility) r := v 1 / v gb ◮ ( r , v gb ) ∼ ˆ µ instead of ( v 1 , v gb ) ∼ µ v 1 v gb r r v gb v gb 8 / 19

  6. Main Theorem (Two Identical Products) Ratio (relative utility) r := v 1 / v gb ◮ ( r , v gb ) ∼ ˆ µ instead of ( v 1 , v gb ) ∼ µ Theorem PB is ◮ optimal if r stochastically nondecreasing in v gb . ◮ not optimal if r stochastically decreasing in v gb . v 1 v gb 8 / 19

  7. Main Theorem (Two Identical Products) Ratio (relative utility) r := v 1 / v gb ◮ ( r , v gb ) ∼ ˆ µ instead of ( v 1 , v gb ) ∼ µ Theorem PB is ◮ optimal if r stochastically nondecreasing in v gb . ◮ not optimal if r stochastically decreasing in v gb . v 1 r stochastically nondecreasing in v gb : ◮ Pr ( r ≥ ˆ r | v gb ) nondecreasing in v gb (stochastic dominance) r ˆ v gb v gb 8 / 19

  8. Main Theorem (Two Identical Products) Ratio (relative utility) r := v 1 / v gb ◮ ( r , v gb ) ∼ ˆ µ instead of ( v 1 , v gb ) ∼ µ Theorem PB is ◮ optimal if r stochastically nondecreasing in v gb . ◮ not optimal if r stochastically decreasing in v gb . v 1 r stochastically nondecreasing in v gb : ◮ Pr ( r ≥ ˆ r | v gb ) nondecreasing in v gb (stochastic dominance) r ˆ v gb v gb → 8 / 19

  9. Main Theorem (Two Identical Products) Ratio (relative utility) r := v 1 / v gb ◮ ( r , v gb ) ∼ ˆ µ instead of ( v 1 , v gb ) ∼ µ Theorem PB is ◮ optimal if r stochastically nondecreasing in v gb . ◮ not optimal if r stochastically decreasing in v gb . v 1 r stochastically nondecreasing in v gb : ◮ Pr ( r ≥ ˆ r | v gb ) nondecreasing in v gb (stochastic dominance) Curve: v gb 8 / 19

  10. Main Theorem (Two Identical Products) Ratio (relative utility) r := v 1 / v gb ◮ ( r , v gb ) ∼ ˆ µ instead of ( v 1 , v gb ) ∼ µ Theorem PB is ◮ optimal if r stochastically nondecreasing in v gb . ◮ not optimal if r stochastically decreasing in v gb . v 1 r stochastically nondecreasing in v gb : r ′ ◮ Pr ( r ≥ ˆ r | v gb ) nondecreasing in v gb (stochastic dominance) r Curve: v gb v ′ v gb gb 8 / 19

  11. Main Theorem: Any Number of Products Products 1 to k , ( v b ) b ⊆{ 1 ,..., k } ◮ ∀ b , define ratio r b = v b / v gb ∈ [0 , 1]. Let r = ( r b ) b ⊆{ 1 ,..., k } . 9 / 19

  12. Main Theorem: Any Number of Products Products 1 to k , ( v b ) b ⊆{ 1 ,..., k } ◮ ∀ b , define ratio r b = v b / v gb ∈ [0 , 1]. Let r = ( r b ) b ⊆{ 1 ,..., k } . Theorem PB is ◮ optimal if r stochastically nondecreasing in v gb . ◮ not optimal if r stochastically decreasing in v gb . 9 / 19

  13. Main Theorem: Any Number of Products Products 1 to k , ( v b ) b ⊆{ 1 ,..., k } ◮ ∀ b , define ratio r b = v b / v gb ∈ [0 , 1]. Let r = ( r b ) b ⊆{ 1 ,..., k } . Theorem PB is ◮ optimal if r stochastically nondecreasing in v gb . ◮ not optimal if r stochastically decreasing in v gb . 9 / 19

  14. Main Theorem: Any Number of Products Products 1 to k , ( v b ) b ⊆{ 1 ,..., k } ◮ ∀ b , define ratio r b = v b / v gb ∈ [0 , 1]. Let r = ( r b ) b ⊆{ 1 ,..., k } . Theorem PB is ◮ optimal if r stochastically nondecreasing in v gb . ◮ not optimal if r stochastically decreasing in v gb . r stochastically nondecreasing in v gb : ◮ Pr ( r ∈ ˆ R | v gb ) nondecreasing in v gb for all “upper sets” ˆ R . 9 / 19

  15. Main Theorem: Any Number of Products Products 1 to k , ( v b ) b ⊆{ 1 ,..., k } ◮ ∀ b , define ratio r b = v b / v gb ∈ [0 , 1]. Let r = ( r b ) b ⊆{ 1 ,..., k } . Theorem PB is ◮ optimal if r stochastically nondecreasing in v gb . ◮ not optimal if r stochastically decreasing in v gb . r b 1 r stochastically nondecreasing in v gb : ◮ Pr ( r ∈ ˆ R | v gb ) nondecreasing in v gb for all “upper sets” ˆ R . r b ′ 1 9 / 19

  16. Main Theorem: Any Number of Products Products 1 to k , ( v b ) b ⊆{ 1 ,..., k } ◮ ∀ b , define ratio r b = v b / v gb ∈ [0 , 1]. Let r = ( r b ) b ⊆{ 1 ,..., k } . Theorem PB is ◮ optimal if r stochastically nondecreasing in v gb . ◮ not optimal if r stochastically decreasing in v gb . r b 1 r stochastically nondecreasing in v gb : ˆ R ◮ Pr ( r ∈ ˆ R | v gb ) nondecreasing in v gb for all “upper sets” ˆ R . r b ′ 1 9 / 19

  17. Main Theorem: Any Number of Products Products 1 to k , ( v b ) b ⊆{ 1 ,..., k } ◮ ∀ b , define ratio r b = v b / v gb ∈ [0 , 1]. Let r = ( r b ) b ⊆{ 1 ,..., k } . Theorem PB is ◮ optimal if r stochastically nondecreasing in v gb . ◮ not optimal if r stochastically decreasing in v gb . r b 1 r stochastically nondecreasing in v gb : ˆ R ◮ Pr ( r ∈ ˆ R | v gb ) nondecreasing in v gb for all “upper sets” ˆ R . r b ′ 1 9 / 19

  18. Example 1: Complementarities Two products, values v { 1 } , v { 2 } , v { 1 , 2 } 10 / 19

  19. Example 1: Complementarities Two products, values v { 1 } , v { 2 } , v { 1 , 2 } described by x , y 1 , y 2 v b = x · ( y 1 1 1 ∈ b + y 2 1 2 ∈ b + (1 − y 1 − y 2 ) 1 1 , 2 ∈ b ) 10 / 19

  20. Example 1: Complementarities Two products, values v { 1 } , v { 2 } , v { 1 , 2 } described by x , y 1 , y 2 v b = x · ( y 1 1 1 ∈ b + y 2 1 2 ∈ b + (1 − y 1 − y 2 ) 1 1 , 2 ∈ b ) ◮ x : intensity ◮ y 1 : values for product 1 only ( y 2 for product 2) ◮ y 1 + y 2 > 1 ⇒ substitutes: v { 1 } + v { 2 } > v { 1 , 2 } . 10 / 19

  21. Example 1: Complementarities Two products, values v { 1 } , v { 2 } , v { 1 , 2 } described by x , y 1 , y 2 v b = x · ( y 1 1 1 ∈ b + y 2 1 2 ∈ b + (1 − y 1 − y 2 ) 1 1 , 2 ∈ b ) ◮ x : intensity ◮ y 1 : values for product 1 only ( y 2 for product 2) ◮ y 1 + y 2 > 1 ⇒ substitutes: v { 1 } + v { 2 } > v { 1 , 2 } . ( y 1 + y 2 > 1 ⇒ complements; y 1 + y 2 = 1 ⇒ additive) 10 / 19

  22. Example 1: Complementarities Two products, values v { 1 } , v { 2 } , v { 1 , 2 } described by x , y 1 , y 2 v b = x · ( y 1 1 1 ∈ b + y 2 1 2 ∈ b + (1 − y 1 − y 2 ) 1 1 , 2 ∈ b ) ◮ x : intensity ◮ y 1 : values for product 1 only ( y 2 for product 2) ◮ y 1 + y 2 > 1 ⇒ substitutes: v { 1 } + v { 2 } > v { 1 , 2 } . ( y 1 + y 2 > 1 ⇒ complements; y 1 + y 2 = 1 ⇒ additive) Corollary PB is ◮ optimal if ( y 1 , y 2 ) stochastically nondecreasing in x. ◮ not optimal if ( y 1 , y 2 ) stochastically decreasing in x. 10 / 19

  23. Example 1: Complementarities Two products, values v { 1 } , v { 2 } , v { 1 , 2 } described by x , y 1 , y 2 v b = x · ( y 1 1 1 ∈ b + y 2 1 2 ∈ b + (1 − y 1 − y 2 ) 1 1 , 2 ∈ b ) ◮ x : intensity ◮ y 1 : values for product 1 only ( y 2 for product 2) ◮ y 1 + y 2 > 1 ⇒ substitutes: v { 1 } + v { 2 } > v { 1 , 2 } . ( y 1 + y 2 > 1 ⇒ complements; y 1 + y 2 = 1 ⇒ additive) Corollary PB is ◮ optimal if ( y 1 , y 2 ) stochastically nondecreasing in x. ◮ not optimal if ( y 1 , y 2 ) stochastically decreasing in x. PB optimal if high value consumers consider products more substitutable 10 / 19

  24. Recall Additive Example v { 2 } 0 . 8 0 . 2 v { 1 } 0 . 2 0 . 8 11 / 19

  25. Recall Additive Example Additivity & perfect negative correlation ⇒ v gb constant ⇒ r trivially stochastically nondecreasing in v gb ⇒ PB optimal v { 2 } 0 . 8 0 . 2 v { 1 } 0 . 2 0 . 8 11 / 19

  26. Recall Additive Example Additivity & perfect negative correlation ⇒ v gb constant ⇒ r trivially stochastically nondecreasing in v gb ⇒ PB optimal v { 2 } 0 . 8 0 . 2 v { 1 } 0 . 2 0 . 8 Folklore: Bundle if v { 1 } , v { 2 } negatively correlated ◮ v 1 , v 2 : disutility from getting smaller bundle (compared to { 1 , 2 } ) ◮ Reinterpretation: Bundle if disutilities negatively correlated Our result: Bundle if v 1 / v gb and v gb positively correlated ◮ 1 − v 1 / v gb : relative disutility from getting smaller bundle ◮ Bundle if relative disutility and v gb negatively correlated 11 / 19

  27. Example 2: Cobb Douglas Utilities ◮ k divisible products 1 , . . . , k 12 / 19

  28. Example 2: Cobb Douglas Utilities ◮ k divisible products 1 , . . . , k ◮ Bundle: b = ( b 1 , . . . , b k ) , b i ∈ [0 , 1] 12 / 19

  29. Example 2: Cobb Douglas Utilities ◮ k divisible products 1 , . . . , k ◮ Bundle: b = ( b 1 , . . . , b k ) , b i ∈ [0 , 1] ◮ A type specified by x , y 1 , . . . , y k 12 / 19

  30. Example 2: Cobb Douglas Utilities ◮ k divisible products 1 , . . . , k ◮ Bundle: b = ( b 1 , . . . , b k ) , b i ∈ [0 , 1] ◮ A type specified by x , y 1 , . . . , y k � b y i v ( b ) = x i i 12 / 19

  31. Example 2: Cobb Douglas Utilities ◮ k divisible products 1 , . . . , k ◮ Bundle: b = ( b 1 , . . . , b k ) , b i ∈ [0 , 1] ◮ A type specified by x , y 1 , . . . , y k � b y i v ( b ) = x i i Corollary PB is ◮ optimal if ( y 1 , . . . , y k ) stochastically nondecreasing in x. ◮ not optimal if ( y 1 , . . . , y k ) stochastically decreasing in x. 12 / 19

  32. Envelope Analysis and Virtual Values Single dimension: v “virtual value” φ ( v ) = v - revenue loss 13 / 19

  33. Envelope Analysis and Virtual Values Single dimension: v “virtual value” φ ( v ) = v - revenue loss Lemma (Myerson’81) Revenue of any IC mechanism is E v [ x ( v ) · φ ( v )] 13 / 19

  34. Envelope Analysis and Virtual Values Single dimension: v = v − 1 − F ( v ) “virtual value” φ ( v ) = v - revenue loss f ( v ) Lemma (Myerson’81) Revenue of any IC mechanism is E v [ x ( v ) · φ ( v )] 13 / 19

  35. Envelope Analysis and Virtual Values Single dimension: v = v − 1 − F ( v ) “virtual value” φ ( v ) = v - revenue loss f ( v ) Lemma (Myerson’81) Revenue of any IC mechanism is E v [ x ( v ) · φ ( v )] mechanism ( x , p ) E v [ x ( v ) · φ ( v )] max s.t. 0 ≤ x ( v ) ≤ 1 , ∀ v , incentive compatibility 13 / 19

  36. Envelope Analysis and Virtual Values Single dimension: v = v − 1 − F ( v ) “virtual value” φ ( v ) = v - revenue loss f ( v ) Lemma (Myerson’81) Revenue of any IC mechanism is E v [ x ( v ) · φ ( v )] mechanism ( x , p ) E v [ x ( v ) · φ ( v )] max φ ( v ) s.t. 0 ≤ x ( v ) ≤ 1 , ∀ v , v incentive compatibility 13 / 19

  37. Envelope Analysis and Virtual Values Single dimension: v = v − 1 − F ( v ) “virtual value” φ ( v ) = v - revenue loss f ( v ) Lemma (Myerson’81) Revenue of any IC mechanism is E v [ x ( v ) · φ ( v )] mechanism ( x , p ) E v [ x ( v ) · φ ( v )] max φ ( v ) s.t. 0 ≤ x ( v ) ≤ 1 , ∀ v , v incentive compatibility 13 / 19

  38. Envelope Analysis and Virtual Values Single dimension: v = v − 1 − F ( v ) “virtual value” φ ( v ) = v - revenue loss f ( v ) Lemma (Myerson’81) Revenue of any IC mechanism is E v [ x ( v ) · φ ( v )] x ∗ ( v ) mechanism ( x , p ) E v [ x ( v ) · φ ( v )] max 1 φ ( v ) s.t. 0 ≤ x ( v ) ≤ 1 , ∀ v , v incentive compatibility p 13 / 19

  39. Envelope Analysis and Virtual Values Single dimension: v = v − 1 − F ( v ) “virtual value” φ ( v ) = v - revenue loss f ( v ) Lemma (Myerson’81) Revenue of any IC mechanism is E v [ x ( v ) · φ ( v )] Theorem (Myerson’81; Riley and Zeckhauser’83) Posting a price for the item is the optimal mechanism x ∗ ( v ) mechanism ( x , p ) E v [ x ( v ) · φ ( v )] max 1 φ ( v ) s.t. 0 ≤ x ( v ) ≤ 1 , ∀ v , v incentive compatibility p 13 / 19

  40. Envelope Analysis and Curves Lemma Revenue of any IC mechanism is E v [ x 1 ( v ) · φ 1 ( v ) + x gb ( v ) · φ gb ( v )] v 1 V 1 v gb 14 / 19

  41. Envelope Analysis and Curves Lemma Revenue of any IC mechanism is E v [ x 1 ( v ) · φ 1 ( v ) + x gb ( v ) · φ gb ( v )] ◮ φ gb ( v ) = v gb − 1 − F gb ( v gb ) f gb ( v gb ) 1 ( v gb ) 1 − F gb ( v gb ) ◮ φ 1 ( v ) = V 1 ( v gb ) − V ′ f gb ( v gb ) where F gb , f gb are c.d.f and p.d.f of v gb v 1 V 1 v gb 14 / 19

  42. Envelope Analysis and Curves Lemma Revenue of any IC mechanism is E v [ x 1 ( v ) · φ 1 ( v ) + x gb ( v ) · φ gb ( v )] ◮ φ gb ( v ) = v gb − 1 − F gb ( v gb ) f gb ( v gb ) 1 ( v gb ) 1 − F gb ( v gb ) ◮ φ 1 ( v ) = V 1 ( v gb ) − V ′ f gb ( v gb ) where F gb , f gb are c.d.f and p.d.f of v gb Property: ◮ If r ( v gb ) nondecreasing then r ( v gb ) φ gb ( v gb ) ≥ φ 1 ( v gb ) v 1 V 1 v gb 14 / 19

  43. Envelope Analysis and Curves Lemma Revenue of any IC mechanism is E v [ x 1 ( v ) · φ 1 ( v ) + x gb ( v ) · φ gb ( v )] ◮ φ gb ( v ) = v gb − 1 − F gb ( v gb ) f gb ( v gb ) 1 ( v gb ) 1 − F gb ( v gb ) ◮ φ 1 ( v ) = V 1 ( v gb ) − V ′ f gb ( v gb ) where F gb , f gb are c.d.f and p.d.f of v gb Property: ◮ If r ( v gb ) nondecreasing then r ( v gb ) φ gb ( v gb ) ≥ φ 1 ( v gb ) v 1 V 1 φ gb r φ gb v ∗ φ 1 gb v gb v gb 14 / 19

  44. Envelope Analysis and Curves Lemma Revenue of any IC mechanism is E v [ x 1 ( v ) · φ 1 ( v ) + x gb ( v ) · φ gb ( v )] ◮ φ gb ( v ) = v gb − 1 − F gb ( v gb ) f gb ( v gb ) 1 ( v gb ) 1 − F gb ( v gb ) ◮ φ 1 ( v ) = V 1 ( v gb ) − V ′ f gb ( v gb ) where F gb , f gb are c.d.f and p.d.f of v gb Property: ◮ If r ( v gb ) nondecreasing then r ( v gb ) φ gb ( v gb ) ≥ φ 1 ( v gb ) ◮ If further φ gb is increasing then x ∗ is optimal v 1 V 1 φ gb r φ gb x ∗ gb = 0 x ∗ gb = 1 v ∗ φ 1 gb x ∗ 1 = 0 x ∗ 1 = 0 v gb v ∗ v gb gb 14 / 19

  45. Beyond Regularity If ratio r increasing, then only “downward” IC constraints bind v 1 V 1 v ′′ v ′ v 0 v gb 15 / 19

  46. Beyond Regularity If ratio r increasing, then only “downward” IC constraints bind Generalized virtual value: λ ( ν ′ )( v ′ − v ) , ˆ � φ ( v ) = v − v ′ : IC from v ′ to v binds v 1 V 1 v ′′ v ′ v ˆ φ ( v ) 0 v gb 15 / 19

  47. Beyond Regularity If ratio r increasing, then only “downward” IC constraints bind Generalized virtual value: λ ( ν ′ )( v ′ − v ) , ˆ � φ ( v ) = v − v ′ : IC from v ′ to v binds Thus r ˆ φ gb ≥ ˆ φ 1 , and x ∗ 1 = 0. v 1 V 1 v ′′ v ′ v ˆ φ ( v ) 0 v gb 15 / 19

  48. Beyond Paths: Orthogonalization 16 / 19

  49. Beyond Paths: Orthogonalization Two paths V 1 , ˆ V 1 (both with monotone ratio), same marginal F gb v 1 v 1 V 1 ˆ V 1 v gb v gb 16 / 19

  50. Beyond Paths: Orthogonalization Two paths V 1 , ˆ V 1 (both with monotone ratio), same marginal F gb ◮ Let p ∗ = max p p (1 − F gb ( p )) v 1 v 1 V 1 ˆ V 1 v gb v gb 16 / 19

  51. Beyond Paths: Orthogonalization Two paths V 1 , ˆ V 1 (both with monotone ratio), same marginal F gb ◮ Let p ∗ = max p p (1 − F gb ( p )) ◮ PB with price p ∗ is opt for each instance v 1 v 1 V 1 ˆ V 1 v gb v gb 16 / 19

  52. Beyond Paths: Orthogonalization Two paths V 1 , ˆ V 1 (both with monotone ratio), same marginal F gb ◮ Let p ∗ = max p p (1 − F gb ( p )) ◮ PB with price p ∗ is opt for each instance ◮ Consider their mixture: v 1 v 1 v 1 V 1 = α × +(1 − α ) × ˆ V 1 v gb v gb v gb 16 / 19

  53. Beyond Paths: Orthogonalization Two paths V 1 , ˆ V 1 (both with monotone ratio), same marginal F gb ◮ Let p ∗ = max p p (1 − F gb ( p )) ◮ PB with price p ∗ is opt for each instance ◮ Consider their mixture: ◮ Profit ≤ profit if seller “knows” the curve ◮ So optimal to PB with price p ∗ v 1 v 1 v 1 V 1 = α × +(1 − α ) × ˆ V 1 v gb v gb v gb 16 / 19

  54. Beyond Paths: Orthogonalization Two paths V 1 , ˆ V 1 (both with monotone ratio), same marginal F gb ◮ Let p ∗ = max p p (1 − F gb ( p )) ◮ PB with price p ∗ is opt for each instance ◮ Consider their mixture: ◮ Profit ≤ profit if seller “knows” the curve ◮ So optimal to PB with price p ∗ v 1 v 1 v 1 V 1 = α × +(1 − α ) × ˆ V 1 v gb v gb v gb Question: When can a distribution be decomposed? 1 to ratio-monotone curves 2 with same marginal F gb 16 / 19

  55. When Can a Distribution be Decomposed? r stochastically nondecreasing in v gb ( Pr ( r ≥ ˆ r | v H ) ↑ in v gb ) r 1 ˆ r 0 v gb 17 / 19

  56. When Can a Distribution be Decomposed? r stochastically nondecreasing in v gb ( Pr ( r ≥ ˆ r | v H ) ↑ in v gb ) ⇔ “contour lines” nondecreasing r 1 ˆ r 0 v gb 17 / 19

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend