what do we know about intrinsic metric curvature of
play

What do we know about intrinsic metric curvature of affine - PDF document

What do we know about intrinsic metric curvature of affine hypersurfaces? Udo Simon Leuven August 29, 2012 Euclidean hypersurface theory: intrinsic curvature has obvious geometric meaning . Affine (relative) hypersurface theories: far


  1. What do we know about intrinsic metric curvature of affine hypersurfaces? Udo Simon Leuven August 29, 2012

  2. Euclidean hypersurface theory: intrinsic curvature has obvious geometric meaning . Affine (relative) hypersurface theories: far from a geometric understanding of intrinsic (metric) curvature 1

  3. Review of relative hypersurfaces non-degenerate scalar product � : R ( n +1) ∗ × R n +1 → R . � , ∇ canonical flat connection on R n +1 hypersurface M conn., or,, diff. mfd, dim. n ≥ 2 x : M → R n +1 immersion normalization: pair ( Y, z ) with � Y, z � = 1 z : M → R n +1 transversal field Y : M → R ( n +1) ∗ conormal field, � Y, dz ( v ) � = 0 . ( x, Y, z ) normalized hypersurface Induced volume forms ω ( v 1 , ..., v n ) := det ( dx ( v 1 ) , ..., dx ( v n ) , z ) ( v 1 , ..., v n ) local frame ω ∗ ( v 1 , ..., v n ) := det ∗ ( dY ( v 1 ) , ..., dY ( v n ) , − Y ) might be trivial 2

  4. Structure equations for ( x, z ) Gauß and Weingarten ∇ v dx ( w ) = dx ( ∇ v w ) + h ( v, w ) z dz ( v ) = dx ( − S ( v )) + τ ( v ) z. Non-degenerate hypersurfaces ( x, Y, z ) non-degenerate ⇔ rank h = n conformal class C ω ∗ is non-degenerate Structure equations for Y ∇ v dY ( w ) = dY ( ∇ ∗ n − 1 Ric ∗ ( v, w )( − Y ) 1 v w )+ 3

  5. Relative normalizations x non-deg. and ( Y, y ) distinguished: dy ( v ) = dx ( − S ( v )) ( x.Y.y ) relative hypersurface Lemma. ( x, Y, y ) rel. hypers. Then • ∇ torsion free and Ricci symmetric; • h semi-Riemannian metric; • shape op. S is h -self adjoint; • ω · ω ∗ = ω 2 (on a frame). 4

  6. Cubic form and Tchebychev form difference tensor C ( v, w ) := ∇ ( h ) v w − ∇ ∗ v w associated cubic form C ♭ ( u, v, w ) := h ( u, C ( v, w )) , totally symmetric Invariants of the pair { h, C } : || C || 2 =: n ( n − 1) J ; Pick invariant trace of C , Tchebychev form T ♭ : n T ♭ ( v ) := trace ( w �→ C ( v, w )) h ( v, T ) := T ♭ ( v ) Tchebychev field Fact: T has a potential function. relative support function x o ∈ R n +1 given fixed point, define: ρ ( x o ) := � Y, x − x o � . 5

  7. Integrability conditions Gauß R ( h ) i C r kj C i rl − C r lj C i = jkl rk � � 1 S lj δ i k − S kj δ i l + h lj S i k − h kj S i + · l 2 Ricci tensor: R ( h ) ij = ij + ( n − 2) C irs C rs − nT r C r S ij + n = 2 Hh ij j 2 Relative Theorema Egregium: n κ ( h ) = J + H − n − 1 h ( T, T ) . 6

  8. Examples of relative normalizations The Euclidean normalization mark “E” for Euclidean invariants µ Euclidean unit normal ( Y ( E ) , y ( E )) = ( µ, µ ) is rel. normalization I , II , III, three fundamental forms h ( E ) = II relative metric 2 C ♭ ( E ) = ∇ ∗ ( III ) II = −∇ ( I ) II cubic form T ♭ ( E ) = − 1 2 n d ln | det S ( E ) | Tchebychev 7

  9. Blaschke normalization ′′ e ′′ as mark y := y ( e ) affine normal , unique within all relative normalizations by T ( e ) = 0 equiv. ω ∗ = ω ( h ), apolarity Centroaffine normalization ′′ c ′′ as mark { p ∈ M | x ( p ) tangential } nowhere dense for x non-degenerate Define: x centroaff. ↔ position vec. always transver. choose rel.normal y ( c ) := ε x , ε = ± 1 Y ( c ) oriented s. t.: 1 = � Y ( c ) , y ( c ) � . Def. x loc. str. convex (i) x hyperbolic type ↔ tangent plane separates origin and hypersurface (ii) x elliptic type ↔ tangent plane does not separate origin and hypersurface 8

  10. Conformal class of relative metrics Fix origin in R n +1 , position vector x transv. q = ρ ♯ Y ♯ = q · Y h ♯ = q · h, ρ ∈ C ∞ and Relate different relative geometries of x : (i) Blaschke - Euclidean: 1 h ( e ) = | det S ( E ) | − n +2 · II (ii) Blaschke - centroaffine: h ( e ) = ρ ( e ) · h ( c ) Calculate Tchebychev forms: (a) Euclidean: 2 n T ( E ) ♭ = − d ln | det S ( E ) | (b) centroaffine: T ( c ) ♭ = n +2 2 n d ln | ρ ( e )( O ) | 9

  11. Gauge invariance invariants independent of particular relative normalization: (i) conformal curvature tensor W Weyl (ii) projective curvature tensor P Weyl for ∇ ∗ : we have P = 0 . � (iii) C ( v, w ) := n n +2 ( T ♭ ( v ) w + T ♭ ( w ) v + h ( v, w ) T ) C ( v, w ) − T ♭ := T ♭ + n +2 (iv) � 2 n d ln ρ ( O ) . 10

  12. Examples: Special classes of hypersurfaces Quadrics ( x, Y, y ) hyperquadric if and only if � C = 0 . Affine (relative) spheres ( x, Y, y ) proper relative sphere if y = λ ( x − x o ) for some x o ∈ R n +1 Fact. ( x, Y, y ) prop. aff. sphere ⇔ ρ ( e )( x o ) = const ⇔ T ( c ) = 0 11

  13. Extremal Blaschke hypersurfaces Euler-Lagrange equ: traceS = 0 nonlinear PDE of fourth order, Monge-Amp` ere type maximal hypersurfaces : Sec. variation area functional negative if: x loc. str. convex, critical point maximal if (i) x has dimension n = 2; or (ii) x is a graph hypers. in dim. n ≥ 2 . Centroaffine extremal hypersurfaces Euler-Lagr. equ: trace ∇ ( h ( c )) T ( c ) = 0 . Example: · · · x α n +1 x α 1 1 x α 2 n +1 = 1 , 2 where α 1 > 0 , · · · , α n +1 > 0; and x 1 , · · · x n +1 pos. canonical coord. R n +1 . 12

  14. Centroaffine Tchebychev hypersurfaces λ ∈ C ∞ ∇ ( h ( c )) T ( c ) = λ · id where Theorem. ( x, Y ( c ) , y ( c )) is centroaffine Tchebychev hypersurface if and only if the equiaffine support function ρ ( e ) satisfies PDE- system Hess ( c ) (ln | ρ ( e ) | ) − 1 n ∆( c )(ln | ρ ( e ) | ) · h ( c ) = 0; PDE independent of choice origin. Corollary. Assume centroaffine Tcheby- chev hypersurface, n ≥ 3 , has complete centroaffine metric. Then it is a proper affine sphere or its metric is conformally flat. 13

  15. Blaschke hypersurfaces Local classification affine spheres, constant sectional curvature n = 2, • l.s. convex surface: quadric (ellipsoid, ell. paraboloid, two-sheeted hyperboloid) • l.s. convex surface: x 1 x 2 x 3 = 1 • indefinite: κ > 0 and H > 0 : ruled surface x = u 1 f ( u 2 ) + f ′ ( u 2 ) • indef: κ = 0 and H = 0 : x 3 = x 1 x 2 + Φ( x 2 ) • indef: κ = 0 and H < 0 : [( x 1 ) 2 + ( x 2 ) 2 ] · x 3 = 1 • indef: κ < 0 and H < 0 : ruled surface x = u 1 f ( u 2 ) + f ′ ( u 2 ) . 14

  16. Local classification affine spheres, constant sectional curvature c : n ≥ 2 and J � = 0 : • l.s. c.: quadric or x 1 x 2 · · · x n +1 = 1 • indef: n = 2 m − 1 and c = 0 ( x 2 1 ± x 2 2 )( x 2 3 ± x 2 4 ) · · · ( x 2 2 m − 1 ± x 2 2 m ) = 1 • indef: n = 2 m and c = 0 ( x 2 1 ± x 2 2 )( x 2 3 ± x 2 4 ) · · · ( x 2 2 m − 1 ± x 2 2 m ) × × x 2 m +1 = 1 15

  17. Inner curvature: Euclidean form II κ ( II ) = H ( E ) + � � 1 ||∇ ( I ) II || 2 II − || d ln | det S ( E ) | || 2 + II 4 n ( n − 1) Global: Let x C 4 -hyperovaloid, κ ( II ) = const. Then x ( M ) Euclidean sphere. Let x ovaloid, κ ( II ) = const · K ( I ) . Then x sphere. Let x ovaloid, κ ( II ) = H ( E ) . Then x sphere 16

  18. Intrinsic curvature: centroaffine Flat centroaffine metric: Canonical centroaffine hypersurfaces x centroaffine hypersurf.; h ( c ) flat, ∇ ( h ( c )) C ( c ) = 0 . Then: · · · x α n +1 (i) x α 1 1 · x α 1 2 n +1 = 1 , where 2 � α 1 � = 0 , 0 < α i for 2 < i, i α i � = 0 . (ii) Let α 2 1 + α 2 2 � = 0 , 0 < α i for 3 ≤ i, 0 � = 2 α 2 + � n +1 and α i . 3 ( − α 1 arctg x 1 x 2 ) ( x 2 3 .. x α n +1 2 ) α 2 · x α 3 1 + x 2 n +1 = 1 e 1 2 x 1 · ( x 2 2 + · · · + x 2 (iii) x n +1 = ν − 1 ) × . × ( α 2 x 2 + ... + α ν − 1 x ν − 1 ) . − x 1 ( α 1 ln x 1 + · · · + α n ln x n ) , where 2 ≤ ν ≤ n + 1 , 0 < α i for ν ≤ i and 0 � = α 1 + α ν + · · · + α n . 17

  19. Differential inequality for κ ( c ). x l. s. convex Tchebychev h-surface, semi-positive Ric . Then: ∆( κ + � T � 2 ) ≥ 4 κ ( κ − ǫ ) + n +2 λ 2 . 4 n Hyperovaloids x centroaffine hyperovaloid. If κ ( c ) = const then 1 ≤ κ. Ovaloids (i) x centroaffine ovaloid. If κ ( c ) = const then 1 = κ. (ii) x centroaffine analytic ovaloid. If κ ( c ) = const then ellipsoid , M¨ unzner (iii) x Tchebychev ovaloid, κ ( c ) = const , then ellipsoid 18

  20. Complete Tchebychev hypersurfaces x l.s. convex, hyperb. Tchebychev, n ≥ 3 h ( c ) complete, Ric ≥ 0 , κ ( c ) = const Then x hyperbolic affine sphere or (i) from canon. h-surface. Proof uses max. principle Omori-Yau: define: F := ( κ + � T � 2 ) ≥ 0; G := ( F + δ ) − 1 2 > 0 . Calculate ( G · ∆ G ): k ( G · ∆ G )( p k ) = − 1 k ( G 4 · ∆ F )( p k ) ≤ 0 ≤ lim 2 lim k G 4 ( p k ) ≤ − 2 κ ( κ + 1) lim − 2 n 2 ( n − 1) k G 4 ( p k ) λ 2 ( p k ) ≤ 0 . lim n +2 19

  21. The nasty term Algebraic curvature tensors Orthogonal decomposition into (unique) ir- reducible subspaces: A = A 1 ⊕ A 2 ⊕ A 3 A 1 : constant curvature type A 2 : scalar flat A 3 : Ricci flat Ric ( A ) ij = C irs C rs − nT r C ijr j τ ( A ) = || C || 2 − n 2 || T || 2 20

  22. Equation of associativity and topological field theory Local hyperbolic graph surface, asymptotic coordinates ( x, y ). C ijk = − 1 2 · ∂ k ∂ j ∂ i f If x has constant curvature metric then A ( w, v, u, z ) = = ( κ + 1) · ( h ( w, u ) h ( v, z ) − h ( v, u ) h ( w, z )) and nasty term reads: ∂ xxx f · ∂ yyy f − ∂ xxy f · ∂ xyy f = const. Similar equation for convex case. 21

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend