what can we expect from grid point arome
play

What can we expect from grid point AROME ? Thomas Burgot (PhD - PowerPoint PPT Presentation

What can we expect from grid point AROME ? Thomas Burgot (PhD Student, CNRM/GMAP/ALGO) Supervisors : Ludovic Auger, Pierre Bnard Dynamic Day 28/05/2019 Introduction AROME 2D AROME 3D Steep slopes Conclusion Problem Two issues :


  1. What can we expect from grid point AROME ? Thomas Burgot (PhD Student, CNRM/GMAP/ALGO) Supervisors : Ludovic Auger, Pierre Bénard Dynamic Day 28/05/2019

  2. Introduction AROME 2D AROME 3D Steep slopes Conclusion Problem Two issues : • Scalability • Steep slopes A common solution ? • Grid Point approach 1/ 21

  3. Introduction AROME 2D AROME 3D Steep slopes Conclusion AROME 2D - presentation • ICI constant coefficient, SL, A-grid, mass-based coordinate, etc • No physics, idealised test cases • Spectral or grid point versions Grid point version : • Explicit diffusion • Krylov solver Stop criterion : � ( Ax − b ) T ( Ax − b ) ε = √ bb T 2/ 21

  4. Introduction AROME 2D AROME 3D Steep slopes Conclusion Density current test case Spectral vs Grid Point 4 th order, N iter ≈ 10 3/ 21

  5. Introduction AROME 2D AROME 3D Steep slopes Conclusion Hypothesis Parallelisation : • No MPI, no Open-MP Geometry : • 500 x 500 pts (vs 1536 x 1440 pts in operational AROME) Spectral computations : • From D t +∆ t to U t +∆ t and V t +∆ t • Implicit diffusion • RHS Grid point computations : • Derivatives in the linear operator • Krylov solver 4/ 21

  6. Introduction AROME 2D AROME 3D Steep slopes Conclusion Spectral vs Grid Point Spectral AROME Grid Point AROME 297.0 297.0 47°N 47°N 293.9 293.9 290.8 290.8 46°N 46°N 287.7 287.7 284.6 284.6 45°N 45°N 281.5 281.5 278.4 278.4 44°N 44°N 275.3 275.3 272.2 272.2 43°N 43°N 269.1 269.1 266.0 266.0 3°E 4°E 5°E 6°E 7°E 8°E 9°E 10°E 3°E 4°E 5°E 6°E 7°E 8°E 9°E 10°E T80, δ t = 50 s , T = 2 h , ∆ x = 1 . 3 km , N iter ≈ 13, 8 th order 5/ 21

  7. Introduction AROME 2D AROME 3D Steep slopes Conclusion Spectral vs Grid Point Difference 1.5 47°N 1.2 0.9 46°N 0.6 0.3 45°N 0.0 0.3 44°N 0.6 0.9 43°N 1.2 1.5 3°E 4°E 5°E 6°E 7°E 8°E 9°E 10°E δ ( T 80 ) , δ t = 50 s , T = 2 h , ∆ x = 1 . 3 km , N iter ≈ 13, 8 th order 6/ 21

  8. Introduction AROME 2D AROME 3D Steep slopes Conclusion Sensitivity test case Difference 0.20 0.16 47°N 0.12 46°N 0.08 0.04 45°N 0.00 0.04 44°N 0.08 0.12 43°N 0.16 0.20 3°E 4°E 5°E 6°E 7°E 8°E 9°E 10°E δ ( T 80 ) , δ t = 50 s , T = 2 h , ∆ x = 1 . 3 km One more iteration in the ICI 7/ 21

  9. Introduction AROME 2D AROME 3D Steep slopes Conclusion Sensitivity test case Difference 0.5 47°N 0.4 0.3 46°N 0.2 0.1 45°N 0.0 0.1 44°N 0.2 0.3 43°N 0.4 0.5 3°E 4°E 5°E 6°E 7°E 8°E 9°E 10°E δ ( T 80 ) , δ t = 50 s , T = 2 h , ∆ x = 1 . 3 km Random noise at the bottom of the atmosphere ( σ = 0 . 01 K ) at t = 0 8/ 21

  10. Introduction AROME 2D AROME 3D Steep slopes Conclusion Comparisons • Comparisons between AROME and some observations : nearly identical scores after 4 hours (not shown) Perspectives : • To extend study to 8 ∗ 24 hours forecast 9/ 21

  11. Introduction AROME 2D AROME 3D Steep slopes Conclusion Solver for constant coefficient SI D t + δ t = D •• � � 1 − δ t 2 B ∆ B non-symmetric matrix (boundary conditions) : GMRES method 10/ 21

  12. Introduction AROME 2D AROME 3D Steep slopes Conclusion Solver for constant coefficient SI By projecting in the eigenspace of B : QD t + δ t = QD •• � � 1 − δ t 2 b m ∆ where b m ∈ [ 10 − 2 , 10 5 ] m 2 s − 2 � b m ∈ [ 0 . 1 , 320 ] ms − 1 ) ( 10/ 21

  13. Introduction AROME 2D AROME 3D Steep slopes Conclusion Solver for constant coefficient SI By projecting in the eigenspace of B : � � QD t + δ t = QD •• 1 − δ t 2 b m ∆ where b m ∈ [ 10 − 2 , 10 5 ] m 2 s − 2 � b m ∈ [ 0 . 1 , 320 ] ms − 1 ) ( 1 +∆ t 2 b m π 2 / ∆ x 2 π 2 1 +∆ t 2 b m 4 π 2 / L 2 ≈ 1 + δ t 2 b m ∆ x 2 = 1 + C 2 cond ≈ ∗ where C ∗ is the CFL number 10/ 21

  14. Introduction AROME 2D AROME 3D Steep slopes Conclusion Convergence behaviour ε = 10 − 8 160 140 Number of iterations required 120 100 80 60 40 20 0 0 10 20 30 40 50 60 70 80 90 Vertical mode index 11/ 21

  15. Introduction AROME 2D AROME 3D Steep slopes Conclusion Numerical cost AROME operational configuration (2019) • 170 nodes on Bull SX supercomputer • output bandwidth from a node : 7 Go/s • network latency : 0.864 ms 12/ 21

  16. Introduction AROME 2D AROME 3D Steep slopes Conclusion Numerical cost AROME operational configuration (2019) • 170 nodes on Bull SX supercomputer • output bandwidth from a node : 7 Go/s • network latency : 0.864 ms Without projection on vertical modes (150 iterations required) : "Total" cost : 27 . 5 + 0 . 1 ≈ 27 . 6 s With projection on vertical modes (13 iterations required) : "Total" cost : 2 . 4 + 1 ≈ 3 . 4 s 12/ 21

  17. Introduction AROME 2D AROME 3D Steep slopes Conclusion Comparison with an HEVI model Cost of 1 iteration in the solver ≈ Cost of 1 acoustic time step 13/ 21

  18. Introduction AROME 2D AROME 3D Steep slopes Conclusion Comparison with an HEVI model Cost of 1 iteration in the solver ≈ Cost of 1 acoustic time step δ t = 50 s , ∆ x = 1300 m , c = 350 m/s HEVI model (if we suppose CFL < 1) : ∆ t ≈ 4 s 13/ 21

  19. Introduction AROME 2D AROME 3D Steep slopes Conclusion Comparison with an HEVI model Cost of 1 iteration in the solver ≈ Cost of 1 acoustic time step δ t = 50 s , ∆ x = 1300 m , c = 350 m/s HEVI model (if we suppose CFL < 1) : ∆ t ≈ 4 s SI grid point model : δ t 50 ∆ τ = = 2 ∗ 13 ≈ 2 s 2 N iter 13/ 21

  20. Introduction AROME 2D AROME 3D Steep slopes Conclusion Conclusion Results • Non exact derivatives –> Order ≥ 6 • Convergence –> N iter ≈ 13 • Technical viability • Simulated computational cost seems low 14/ 21

  21. Introduction AROME 2D AROME 3D Steep slopes Conclusion Linear equations without orographic terms ∂π ′ � 1 � 1 ∂ U ′ ∂ t = − RT ∗ ∂ q ′ ∂ x − RT ∗ m ∗ ∂ T ′ m ∗ ∂ q ′ ∂ x d η ′ + RT ∗ S ∂ x d η ′ ∂ x − R π ∗ π ∗ π ∗ η η S ∂ d ′ ∂ t = − g rH ∗ ∂ ∗ ( ∂ ∗ + 1 ) q ′ � η C p ∂ q ′ � ∂ U ′ 0 m ∗ ∂ U ′ � + 1 ∂ x + d ′ ∂ x d η ′ ∂ t = − π ∗ C v ∂ T ′ ∂ t = − RT ∗ � ∂ U ′ � ∂ x + d ′ C v � 1 ∂π ′ 0 m ∗ ∂ U ′ S ∂ t = − ∂ x d η 15/ 21

  22. Introduction AROME 2D AROME 3D Steep slopes Conclusion Linear equations σ -coor with orographic terms ∂π ∗ ∂ U ′ ∂ t = ... + RT ∗ ∂φ ∗ ∂ x T ′ − ∂φ ∗ ∂ x q ′ − π ∗ ∂φ ∗ ∂ q ′ S + 1 ∂ x π ′ S T ∗ m ∗ π ∗ 2 ∂ x ∂η S ∂ d ′ ∂ t = ... C p ∂ q ′ π ∗ ∂φ ∗ ∂ U ′ ∂π ∗ � 1 � − 1 ∂ x U ′ + ... ∂ t = − ... + RT ∗ m ∗ π ∗ C v ∂ x ∂η ∂ T ′ ∂ t = − RT ∗ π ∗ ∂φ ∗ ∂ U ′ � 1 � ... + RT ∗ m ∗ ∂ x ∂η C v � 1 ∂π ′ 0 U ′ ∂ m ∗ S ∂ t = ... − ∂ x d η 16/ 21

  23. Introduction AROME 2D AROME 3D Steep slopes Conclusion Linear equations η -coor with orographic terms � 1 � 1 ∂ U ′ � m ∗ � m ∗ ∂ � ∂ � qd η ′ − R d ∂ t = ... + R d T ∗ T ′ d η ′ π ∗ π ∗ ∂ x ∂ x η η ∂ d ′ ∂ t = ... ∂ q ′ ∂ t = ... ∂ T ′ ∂ t = ... ∂π ′ S ∂ t = ... 17/ 21

  24. Introduction AROME 2D AROME 3D Steep slopes Conclusion Linear equations η -coor with orographic terms In general : ∂ X ∂ t = L ( X ) With a 2-TL discretisation : � � I − δ t X + = X • 2 L 17/ 21

  25. Introduction AROME 2D AROME 3D Steep slopes Conclusion SI scheme A I U + U • B C d + d • q + q • = T + T • π + π • S S 18/ 21

  26. Introduction AROME 2D AROME 3D Steep slopes Conclusion SI scheme A I U + U • B C Φ + Φ • = 18/ 21

  27. Introduction AROME 2D AROME 3D Steep slopes Conclusion SI scheme U + + A Φ + = U • BU + + C Φ + = Φ • We can reduce the problem to only one equation : U + = U • − AC − 1 Φ • � � I − AC − 1 B 19/ 21

  28. Introduction AROME 2D AROME 3D Steep slopes Conclusion SI scheme U + + A Φ + = U • BU + + C Φ + = Φ • In constant coefficient approach : U + = U • − AC − 1 Φ • � � I − A ∗ C − 1 B ∗ ∆ 19/ 21

  29. Introduction AROME 2D AROME 3D Steep slopes Conclusion SI scheme U + + A Φ + = U • BU + + C Φ + = Φ • With orography in σ -coordinate : U + = U • − AC − 1 Φ • � � I − AC − 1 B • Orographic idealised test cases • Identify the instability contribution of each orographic term 19/ 21

  30. Introduction AROME 2D AROME 3D Steep slopes Conclusion SI scheme U + + A Φ + = U • BU + + C Φ + = Φ • With orography in η -coordinate : U + = U • − AC − 1 Φ • � � I − AC − 1 B 19/ 21

  31. Introduction AROME 2D AROME 3D Steep slopes Conclusion Conclusion & perspectives Scalability : • Grid point approach seems viable in AROME • Grid point approach seems competitive Perspectives • To test some preconditioners ? • To remove completely spectral computations in AROME ? Steep slopes : Perspectives • To test it in AROME 2D • To measure the interest/potential 20/ 21

  32. Introduction AROME 2D AROME 3D Steep slopes Conclusion End Thank you for your attention ! Do you have some questions ? 21/ 21

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend