weighted norm inequalities for integral transforms with
play

Weighted norm inequalities for integral transforms with kernels - PowerPoint PPT Presentation

Weighted norm inequalities for integral transforms with kernels bounded by power functions Alberto Debernardi Centre de Recerca Matem` atica, Barcelona 6th Workshop on Fourier Analysis and Related Topics University of P ecs, 26 August 2017


  1. Weighted norm inequalities for integral transforms with kernels bounded by power functions Alberto Debernardi Centre de Recerca Matem` atica, Barcelona 6th Workshop on Fourier Analysis and Related Topics University of P´ ecs, 26 August 2017 A. Debernardi–CRM WNI’s for integral transforms 1 / 22

  2. Brief history: weighted norm inequalities for the Fourier transform For the Fourier transform � f ( x ) e − ixy dx, � f ( y ) = R it was proved in the 1980s (Muckenhoupt, Jurkat-Sampson) that the weighted norm inequality � � � 1 /q � � � 1 /p f ( y ) | q dy v ( x ) | f ( x ) | p dx � � u ( y ) | � f � q,u := ≤ C =: � f � p,v R R holds for every f with 1 < p ≤ q < ∞ and C > 0 independent of f provided that there exists D > 0 such that for every r > 0 � � 1 /r � 1 /q � � r � 1 /p ′ (1 /v ) ∗ ( x ) 1 − p ′ dx u ∗ ( y ) dy ≤ D. 0 0 A. Debernardi–CRM WNI’s for integral transforms 2 / 22

  3. Problem Given an integral transform � ∞ Ff ( y ) = y c 0 x b 0 f ( x ) K ( x, y ) dx, y > 0 , b 0 , c 0 ∈ R , 0 where � ( xy ) b 1 , ( xy ) b 2 � | K ( x, y ) | � min , b 1 > b 2 . � 1 � ∞ 0 x b 0 + b 1 | f ( x ) | dx + 1 x b 0 + b 2 | f ( x ) | dx < ∞ . We also assume We want to give sufficient (and necessary, when possible) conditions for the weighted norm inequality � y − β Ff � q ≤ C � x γ f � p , 1 < p ≤ q < ∞ , (1) to hold, using an approach that does not involve decreasing rearrangements. A. Debernardi–CRM WNI’s for integral transforms 3 / 22

  4. Examples 1. The Fourier transform is not a good example, since | K ( x, y ) | = | e 2 πixy | = 1 does not satisfy � ( xy ) b 1 , ( xy ) b 2 � | K ( x, y ) | � min , b 1 > b 2 . The cosine transform is also a bad example. 2. The sine transform satisfies � � | K ( x, y ) | = | sin xy | � min xy, 1 , i.e., b 1 = 1 > 0 = b 2 . A. Debernardi–CRM WNI’s for integral transforms 4 / 22

  5. Examples: The Hankel transform 3. The classical Hankel transform of order α ≥ − 1 / 2 is defined as � ∞ x 2 α +1 f ( x ) j α ( xy ) dx, H α f ( y ) = 0 where j α is the normalized Bessel function of order α , represented through the series � ∞ ( − 1) n ( z/ 2) 2 n j α ( z ) = Γ( α + 1) n !Γ( n + α + 1) . n =0 The function j α satisfies the estimate � 1 , ( xy ) − α − 1 / 2 } . | j α ( xy ) | � min A. Debernardi–CRM WNI’s for integral transforms 5 / 22

  6. Examples: The H α transform 4. The so-called H α transform is defined as � ∞ ( xy ) 1 / 2 f ( x ) H α ( xy ) dx, H α f ( y ) = α > − 1 / 2 , 0 where H α is the Struve function , defined as � z � α +1 ∞ � ( − 1) n ( z/ 2) 2 n H α ( z ) = Γ( n + 3 / 2)Γ( n + α + 3 / 2) . 2 n =0 A. Debernardi–CRM WNI’s for integral transforms 6 / 22

  7. Examples: The H α transform 4. The so-called H α transform is defined as � ∞ ( xy ) 1 / 2 f ( x ) H α ( xy ) dx, H α f ( y ) = α > − 1 / 2 , 0 where H α is the Struve function , defined as � z � α +1 ∞ � ( − 1) n ( z/ 2) 2 n H α ( z ) = Γ( n + 3 / 2)Γ( n + α + 3 / 2) . 2 n =0 The Struve function satisfies the estimate � min { x α +1 , x − 1 / 2 } , α < 1 / 2 , | H α ( x ) | � min { x α +1 , x α − 1 } , α ≥ 1 / 2 , ◮ P. G. Rooney, Canad. J. Math (1980). A. Debernardi–CRM WNI’s for integral transforms 6 / 22

  8. Known results Cosine transform (and Fourier transform): if Ff = � f or Ff = � f cos , then (1) holds if and only if β = γ + 1 /q − 1 /p ′ and max { 1 /q − 1 /p ′ , 0 } ≤ β < 1 /q. ◮ W. B. Jurkat–G. Sampson, Indiana Univ. Math. J. (1984); B. Muckenhoupt, Proc. Amer. Math. Soc. (1983). ◮ H. P. Heinig, Indiana Univ. Math. J. (1984). A. Debernardi–CRM WNI’s for integral transforms 7 / 22

  9. Known results Cosine transform (and Fourier transform): if Ff = � f or Ff = � f cos , then (1) holds if and only if β = γ + 1 /q − 1 /p ′ and max { 1 /q − 1 /p ′ , 0 } ≤ β < 1 /q. ◮ W. B. Jurkat–G. Sampson, Indiana Univ. Math. J. (1984); B. Muckenhoupt, Proc. Amer. Math. Soc. (1983). ◮ H. P. Heinig, Indiana Univ. Math. J. (1984). Sine transform: if Ff = � f sin , (1) holds if and only if β = γ + 1 /q − 1 /p ′ and max { 1 /q − 1 /p ′ , 0 } ≤ β < 1 + 1 /q. ◮ D. Gorbachev, E. Liflyand, S. Tikhonov, Indiana Univ. Math. J. (to appear). A. Debernardi–CRM WNI’s for integral transforms 7 / 22

  10. Known results Hankel transform: if Ff = H α f ( α ≥ − 1 / 2), then (1) holds if and only if β = γ − 2 α − 1 + 1 /q − 1 /p ′ and max { 1 /q − 1 /p ′ , 0 } − α − 1 / 2 ≤ β < 1 /q. ◮ P. Heywood, P. G. Rooney, Proc. Roy. Soc. Edinburgh (1984). ◮ L. de Carli, J. Math. Anal. Appl. (2008). A. Debernardi–CRM WNI’s for integral transforms 8 / 22

  11. Known results H α transform: if Ff = H α f ( α > − 1 / 2), (1) holds provided that β = γ + 1 /q − 1 /p ′ and – for − 1 / 2 < α < 1 / 2, β ≥ max { 1 /q − 1 /p ′ , 0 } and 1 /q + α − 1 / 2 < β < 1 /q + α + 3 / 2; – for α ≥ 1 / 2, 1 /q + α − 1 / 2 < β < 1 /q + α + 3 / 2 . ◮ P. G. Rooney, Canad. J. Math. (1980). A. Debernardi–CRM WNI’s for integral transforms 9 / 22

  12. Main result (sufficient conditions) The following states sufficient conditions for inequality (1) to hold. Theorem Let 1 < p ≤ q < ∞ . If the integral transform � ∞ Ff ( y ) = y c 0 x b 0 f ( x ) K ( x, y ) dx, y > 0 , b 0 , c 0 ∈ R , 0 � ( xy ) b 1 , ( xy ) b 2 � satisfies | K ( x, y ) | � min , with b 1 > b 2 , then the inequality � y − β Ff � q ≤ C � x γ f � p , 1 < p ≤ q < ∞ , holds for every f , provided that β = γ + c 0 − b 0 + 1 q − 1 1 q + c 0 + b 2 < β < 1 p ′ , q + c 0 + b 1 . A. Debernardi–CRM WNI’s for integral transforms 10 / 22

  13. Sharpness and necessity conditions � ( xy ) b 1 , ( xy ) b 2 � If instead of | K ( x, y ) | � min , there holds � ( xy ) b 1 , ( xy ) b 2 � K ( x, y ) ≍ min , the latter theorem can be improved. Theorem Let 1 < p ≤ q < ∞ . If the integral transform � ∞ Ff ( y ) = y c 0 x b 0 f ( x ) K ( x, y ) dx, y > 0 , b 0 , c 0 ∈ R , 0 � ( xy ) b 1 , ( xy ) b 2 � satisfies | K ( x, y ) | � min , with b 1 > b 2 , then the inequality � y − β Ff � q ≤ C � x γ f � p holds for every f with β = γ + c 0 − b 0 + 1 q − 1 1 q + c 0 + b 2 < β < 1 p ′ , q + c 0 + b 1 . A. Debernardi–CRM WNI’s for integral transforms 11 / 22

  14. Sharpness and necessity conditions � ( xy ) b 1 , ( xy ) b 2 � If instead of | K ( x, y ) | � min , there holds � ( xy ) b 1 , ( xy ) b 2 � K ( x, y ) ≍ min , the latter theorem can be improved. Theorem Let 1 < p ≤ q < ∞ . If the integral transform � ∞ Ff ( y ) = y c 0 x b 0 f ( x ) K ( x, y ) dx, y > 0 , b 0 , c 0 ∈ R , 0 � ( xy ) b 1 , ( xy ) b 2 � satisfies K ( x, y ) ≍ min , with b 1 > b 2 , then the inequality � y − β Ff � q ≤ C � x γ f � p holds for every f if and only if β = γ + c 0 − b 0 + 1 q − 1 1 q + c 0 + b 2 < β < 1 p ′ , q + c 0 + b 1 . A. Debernardi–CRM WNI’s for integral transforms 11 / 22

  15. Examples We can get the following sufficient conditions for (1): Cosine transform: no sufficient conditions! ( b 1 � > b 2 ). max { 1 /q − 1 /p ′ , 0 } ≤ β < 1 /q. A. Debernardi–CRM WNI’s for integral transforms 12 / 22

  16. Examples We can get the following sufficient conditions for (1): Cosine transform: no sufficient conditions! ( b 1 � > b 2 ). max { 1 /q − 1 /p ′ , 0 } ≤ β < 1 /q. Sine transform: 1 /q < β < 1 + 1 /q max { 1 /q − 1 /p ′ , 0 } ≤ β < 1 + 1 /q. A. Debernardi–CRM WNI’s for integral transforms 12 / 22

  17. Examples We can get the following sufficient conditions for (1): Cosine transform: no sufficient conditions! ( b 1 � > b 2 ). max { 1 /q − 1 /p ′ , 0 } ≤ β < 1 /q. Sine transform: 1 /q < β < 1 + 1 /q max { 1 /q − 1 /p ′ , 0 } ≤ β < 1 + 1 /q. Hankel transform of order α > − 1 / 2: 1 /q − α − 1 / 2 < β < 1 /q max { 1 /q − 1 /p ′ , 0 } − α − 1 / 2 ≤ β < 1 /q. A. Debernardi–CRM WNI’s for integral transforms 12 / 22

  18. Examples H α transform ( α > − 1 / 2): 1 /q < β < 1 /q + α + 3 / 2 , − 1 / 2 < α < 1 / 2 , 1 /q + α − 1 / 2 < β < 1 /q + α + 3 / 2 , α ≥ 1 / 2 . Recall the known sufficient conditions: – For − 1 / 2 < α < 1 / 2, β ≥ max { 1 /q − 1 /p ′ , 0 } and 1 /q + α − 1 / 2 < β < 1 /q + α + 3 / 2 . – For α ≥ 1 / 2, 1 /q + α − 1 / 2 < β < 1 /q + α + 3 / 2 . A. Debernardi–CRM WNI’s for integral transforms 13 / 22

  19. Transforms with kernel represented by power series Recall that � y − β � f � q ≤ C � x γ f � p (2) holds for every f if and only if β = γ + 1 /q − 1 /p ′ and max { 1 /q − 1 /p ′ , 0 } ≤ β < 1 /q. (3) � It was proved by Sadosky and Wheeden that if R f = 0, then (2) holds for 1 /q < β < 1 + 1 /q , additionally to (3). ◮ C. Sadosky and R. L. Wheeden, Trans. Amer. Mat. Soc. (1987). A. Debernardi–CRM WNI’s for integral transforms 14 / 22

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend