weighted branching formulas for the hook lengths
play

Weighted branching formulas for the hook lengths Matja Konvalinka - PowerPoint PPT Presentation

Weighted branching formulas for the hook lengths Matja Konvalinka Vanderbilt University (joint with Ionu t Ciocan-Fontanine and Igor Pak) FPSAC 2010, San Francisco, August 2010 Partitions Definition A partition of n is a finite


  1. Weighted branching formulas for the hook lengths Matjaž Konvalinka Vanderbilt University (joint with Ionu¸ t Ciocan-Fontanine and Igor Pak) FPSAC 2010, San Francisco, August 2010

  2. Partitions Definition A partition λ of n is a finite sequence ( λ 1 , λ 2 , . . . , λ k ) satisfying λ 1 ≥ λ 2 ≥ . . . ≥ λ k > 0 and λ 1 + . . . + λ k = n . We represent a partition by its Young diagram [ λ ] . A corner of a partition is a square in the Young diagram that has no square below or to the right. The set of all corners of λ is denoted C [ λ ] . Example Matjaž Konvalinka (Vanderbilt University) Weighted branching formulas August 2010 2 / 24

  3. Geometry of the Hilbert scheme of points ( C ∗ ) 2 (Hilb n )( C 2 ) of the Hilbert scheme of points equivariant quantum cohomology QH ∗ an identity involving partitions machinery of abelian/nonabelian correspondence in Gromov-Witten theory Okounkov Hilbert scheme is Geometric Invariant Theory quotient (via ADHM) Pandharipande ( C ∗ ) 2 (Hilb n ( C 2 )) and DT theory (CDKM) relationship between QH ∗ relative DT theory of P 1 × C 2 DT = Donaldson and Thomas CDKM = Ciocan-Fontanine, Diaconescu, Kim and Maulik ADHM = Atiyah, Drinfeld, Hitchin and Manin Matjaž Konvalinka (Vanderbilt University) Weighted branching formulas August 2010 3 / 24

  4. Conjecture Conjecture Choose variables α and β and a partition λ ⊢ n . For a square s = ( i , j ) of the Young diagram of λ , write w s = i α + j β . Then we have ( w t − w s − α )( w t − w s − β ) � � w s · = n ( α + β ) . ( w t − w s − α − β )( w t − w s ) s ∈ [ λ ] t ∈ [ λ ] \ { s , s +( 1 , 1 ) } Matjaž Konvalinka (Vanderbilt University) Weighted branching formulas August 2010 4 / 24

  5. Equivalent formulation It turns out that the conjecture is equivalent to the following. For positive integers x 1 , . . . , x ℓ , y 1 , . . . , y ℓ , the following is true: ℓ � k − 1 p = 1 ( xp + ... + xk + y ℓ − k + 2 + ... + y ℓ − p + 1 ) · � ℓ q = k + 1 ( xk + 1 + ... + xq + y ℓ − q + 1 + ... + y ℓ − k + 1 ) � xk y ℓ − k + 1 � k − 1 p = 1 ( xp + 1 + ... + xk + y ℓ − k + 2 + ... + y ℓ − p + 1 ) · � ℓ q = k + 1 ( xk + 1 + ... + xq + y ℓ − q + 2 + ... + y ℓ − k + 1 ) k = 1 � = x p y q . p + q ≤ ℓ + 1 Matjaž Konvalinka (Vanderbilt University) Weighted branching formulas August 2010 5 / 24

  6. Standard Young tableaux Definition A Young tableau of shape λ ⊢ n is a bijective map map [ λ ] −→ [ n ] . A Young tableau is standard if the tableau is increasing in rows and in columns. The number of standard Young tableaux of shape λ is denoted by f λ . Example We have f 32 = 5: 1 2 3 1 2 4 1 2 5 4 5 3 5 3 4 1 3 4 1 3 5 2 5 2 4 Matjaž Konvalinka (Vanderbilt University) Weighted branching formulas August 2010 6 / 24

  7. Hook-length formula Definition For a partition λ and a square ( i , j ) of [ λ ] , define the hook as the squares weakly to the right of or below ( i , j ) . The hook length h ij is the number of squares in H ij . Example For λ = 32, the hook lengths are 4 , 3 , 2 , 1 , 1: 4 3 1 2 1 Matjaž Konvalinka (Vanderbilt University) Weighted branching formulas August 2010 7 / 24

  8. Hook-length formula Theorem The number of standard Young tableau of shape λ is n ! f λ = . � h ij Example The number of standard Young tableau of shape 32 is 5 ! f 32 = = 5 . 4 · 3 · 2 · 1 · 1 Matjaž Konvalinka (Vanderbilt University) Weighted branching formulas August 2010 8 / 24

  9. Two examples 0 1 4 6 7 1 2 4 7 2 3 5 6 8 3 5 Matjaž Konvalinka (Vanderbilt University) Weighted branching formulas August 2010 9 / 24

  10. Two examples 0 1 4 6 7 1 2 4 7 2 3 5 6 8 3 5 Matjaž Konvalinka (Vanderbilt University) Weighted branching formulas August 2010 10 / 24

  11. Two examples 0 1 4 6 7 1 2 4 7 2 3 5 6 8 3 5 � n � ( n + 1 )! ( 2 n )! = C n = k ( n + 1 ) k !( n − k )! n !( n + 1 )! Matjaž Konvalinka (Vanderbilt University) Weighted branching formulas August 2010 10 / 24

  12. Greene-Nijenhuis-Wilf proof In a SYT of shape λ , n must be in one of the corners, which implies f λ = � f λ − c . c ∈ C [ λ ] By induction, it suffices to show that n ! F λ = � F λ = F λ − c , where � h ij c ∈ C [ λ ] or, equivalently, that F λ − c � = 1 . F λ c ∈ C [ λ ] Matjaž Konvalinka (Vanderbilt University) Weighted branching formulas August 2010 11 / 24

  13. Branching formula This last formula is equivalent to � s − 1 r − 1 � � 1 1 1 � � � � 1 + 1 + = 1 n h is − 1 h rj − 1 ( r , s ) ∈ C [ λ ] i = 1 j = 1 or   r − 1 s − 1 � � � � �   n · ( h ij − 1 ) = ( h ij − 1 ) h is h rj .     ( i , j ) ∈ [ λ ] \ C [ λ ] ( r , s ) ∈ C [ λ ] i = 1 j = 1 ( i , j ) ∈ [ λ ] \ C [ λ ] i � = r , j � = s Matjaž Konvalinka (Vanderbilt University) Weighted branching formulas August 2010 12 / 24

  14. Branching formula This last formula is equivalent to � s − 1 r − 1 � � 1 1 1 � � � � 1 + 1 + = 1 n h is − 1 h rj − 1 ( r , s ) ∈ C [ λ ] i = 1 j = 1 or   r − 1 s − 1 � � � � �   n · ( h ij − 1 ) = ( h ij − 1 ) h is h rj .     ( i , j ) ∈ [ λ ] \ C [ λ ] ( r , s ) ∈ C [ λ ] i = 1 j = 1 ( i , j ) ∈ [ λ ] \ C [ λ ] i � = r , j � = s This is the branching rule for the hook lengths . The former version can be proved by constructing a random process with terms in the sum on the left-hand side denoting probabilities of all possible outcomes (the hook walk). Matjaž Konvalinka (Vanderbilt University) Weighted branching formulas August 2010 12 / 24

  15. Observation When λ = ( ℓ, ℓ − 1 , . . . , 1 ) , this is our identity when all x i , y j are 1. So we are trying to prove a weighted version of the branching rule for the hook lengths for the staircase shape. Matjaž Konvalinka (Vanderbilt University) Weighted branching formulas August 2010 13 / 24

  16. Weighted hooks   r − 1 s − 1 � � � � �   n · ( h ij − 1 ) = ( h ij − 1 ) h is h rj .     ( i , j ) ∈ [ λ ] \ C [ λ ] ( r , s ) ∈ C [ λ ] i = 1 j = 1 ( i , j ) ∈ [ λ ] \ C [ λ ] i � = r , j � = s y 1 y 2 y 3 y 4 y 5 y 6 y 7 x 1 x 2 y 7 x 3 y 3 y 4 y 5 y 6 x 4 x 4 x 5 x 5 x 6 x 6 Matjaž Konvalinka (Vanderbilt University) Weighted branching formulas August 2010 14 / 24

  17. Weighted branching rule for hook lengths Theorem     � � � �  · x p y q x i + 1 + . . . + x λ ′ j + y j + 1 + . . . + y λ i      ( p , q ) ∈ [ λ ] ( i , j ) ∈ [ λ ] \ C [ λ ]   � � � �   = x r y s x i + 1 + . . . + x λ ′ j + y j + 1 + . . . + y λ i     ( r , s ) ∈ C [ λ ] ( i , j ) ∈ [ λ ] \ C [ λ ] i � = r , j � = s   r − 1 � ( x i + . . . + x r + y s + 1 + . . . + y λ i ) ×   i = 1  � s − 1 � � × y j + . . . + y s + x r + 1 + . . . + x λ ′   j j = 1 Matjaž Konvalinka (Vanderbilt University) Weighted branching formulas August 2010 15 / 24

  18. Example y 1 y 2 y 3 x 1 x 2 x 3 x 4 ( x 1 y 1 + x 2 y 1 + x 3 y 1 + x 4 y 1 + x 1 y 2 + x 2 y 2 + x 1 y 3 ) ( x 2 + x 3 + x 4 + y 2 + y 3 )( x 2 + y 3 )( x 3 + x 4 + y 2 ) x 4 = � � � � ( x 3 + x 4 + y 2 ) x 1 y 3 x 2 + x 3 + x 4 + y 1 + y 2 + y 3 x 2 + y 2 + y 3 x 4 + � � � � x 2 y 2 ( x 2 + x 3 + x 4 + y 2 + y 3 ) x 3 + x 4 + y 1 + y 2 x 1 + x 2 + y 3 x 4 + � � � � � � ( x 2 + y 3 ) x 4 y 1 x 1 + x 2 + x 3 + x 4 + y 2 + y 3 x 2 + x 3 + x 4 + y 2 x 3 + x 4 Matjaž Konvalinka (Vanderbilt University) Weighted branching formulas August 2010 16 / 24

  19. Interpretation of the left-hand side     � � � �  · x p y q x i + 1 + . . . + x λ ′ j + y j + 1 + . . . + y λ i      ( p , q ) ∈ [ λ ] ( i , j ) ∈ [ λ ] \ C [ λ ] ◮ special labels x p , y q ◮ a label x k for some i < k ≤ λ ′ j , or y l for some j < l ≤ λ i , in every non-corner square ( i , j ) Matjaž Konvalinka (Vanderbilt University) Weighted branching formulas August 2010 17 / 24

  20. Example y 1 x 3 x 6 y 4 y 6 y 6 x 4 x 4 x 2 y 3 x 4 y 4 x 3 y 7 y 7 x 4 y 6 x 5 y 5 y 5 x 5 x 4 x 4 y 6 y 3 x 5 y 6 x 5 y 7 y 6 y 3 x 6 y 5 y 6 y 2 y 3 Matjaž Konvalinka (Vanderbilt University) Weighted branching formulas August 2010 18 / 24

  21. Interpretation of the right-hand side � � � � x r y s x i + 1 + . . . + x λ ′ j + y j + 1 + . . . + y λ i ( r , s ) ∈ C [ λ ] ( i , j ) ∈ [ λ ] \ C [ λ ] i � = r , j � = s r − 1 s − 1 � � � � ( x i + . . . + x r + y s + 1 + . . . + y λ i ) y j + . . . + y s + x r + 1 + . . . + x λ ′ j i = 1 j = 1 ◮ special labels x r , y s , corresponding to the corner ( r , s ) ◮ a label x k for some i < k ≤ λ ′ j , or y l for some j < l ≤ λ i , in every non-corner square ( i , j ) , i � = r , j � = s ◮ a label x k for some i ≤ k ≤ λ ′ j , or y l for some s < l ≤ λ i , in every non-corner square ( i , s ) ◮ a label x k for some r < k ≤ λ ′ j , or y l for some j ≤ l ≤ λ i , in every non-corner square ( r , j ) Matjaž Konvalinka (Vanderbilt University) Weighted branching formulas August 2010 19 / 24

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend