weak coupling limit of 2 1 su 2 lattice gauge theory and
play

Weak coupling limit of 2 + 1 , SU (2) lattice gauge theory and mass - PowerPoint PPT Presentation

Weak coupling limit of 2 + 1 , SU (2) lattice gauge theory and mass gap Sreeraj T P The Institute of Mathematical Sciences. 25 July, 2018 Lattice 2018 Work done with : Ramesh Anishetty Sreeraj T P Weak coupling limit of 2 + 1 , SU (2) lattice


  1. Weak coupling limit of 2 + 1 , SU (2) lattice gauge theory and mass gap Sreeraj T P The Institute of Mathematical Sciences. 25 July, 2018 Lattice 2018 Work done with : Ramesh Anishetty Sreeraj T P Weak coupling limit of 2 + 1 , SU (2) lattice gauge theory and mass

  2. Introduction Attempts to describe Yang mills theory in terms of Gauge invariant Wilson loops. Non-local. Over-complete. We will describe gauge theory in ’dual’ electric loop representation. local complete. Sreeraj T P Weak coupling limit of 2 + 1 , SU (2) lattice gauge theory and mass

  3. The plan of the talk. 1 A quick look at Hamiltonian LGT . 2 Point split lattice - PSlattice. 3 Local gauge invariant states. 4 Path integral in phase space. 5 Weak coupling limit and mass gap. Sreeraj T P Weak coupling limit of 2 + 1 , SU (2) lattice gauge theory and mass

  4. Hamiltonian SU(2) Gauge theory on a lattice (Kogut and Susskind, 1976) E a L U ( n , i ) E a R • U ∼ e iA − SU (2) parallel transport operator • E L ≡ lattice analogue of E • E R ≡ − E L parallel transported by U • E 2 R = E 2 L [link constraint] • E L / E R ∈ SU(2) algebra. Sreeraj T P Weak coupling limit of 2 + 1 , SU (2) lattice gauge theory and mass

  5. Hamiltonian SU(2) Gauge theory on a lattice continued.. • Hamiltonian is: g 2 H = ˜ 1 � � E a E a + [2 − TrU p ] 2 g 2 2 links plaq Physical states are gauge invariant. Gauss Law Constraints! E a L � � � E a E a E a L ( i ) + E a R ( i ) | ψ phys � = 0 R L E a R i • Gauss law operator generates gauge transformations at each site. • Gauss law says: at each site, incoming electric flux = outgoing electric flux. Sreeraj T P Weak coupling limit of 2 + 1 , SU (2) lattice gauge theory and mass

  6. Gauge invariant, local Hilbert space E 2 E a i ∈ su (2) algebra E ¯ E 1 1 Gauss law: E ¯ E 1 + � � 1 + � E 2 + � 2 E ¯ E ¯ 2 = 0 � � � � E 1 + � � E 2 + � � � � � � � � � � E 1 + � � � 1 + � � E 1 + � � 1 + � E ¯ + E ¯ = 0 E 2 + E ¯ E ¯ = 0 E ¯ + E ¯ E 2 = 0 1 2 2 2 = = = j 2 j 2 j ¯ j 1 j 2 1 j ¯ 2 = j 12 1¯ j ¯ 12 = j 1¯ j ¯ 12 = j 1¯ 2 2 j ¯ j 1 j ¯ j 1 1 1 j ¯ j ¯ 2 2 j ¯ 2 (Ramesh Anishetty and H. S. Sharatchandra,PRL,65, 813 (1990)) Sreeraj T P Weak coupling limit of 2 + 1 , SU (2) lattice gauge theory and mass

  7. Splitting of point • Split the site into two sites and introduce a new link. • Introduce Link operator and link constraint at the new link. • All sites have 3 links and Gauss law constraint at each site. • Dynamics is much more transparent on the split lattice. (Ramesh Anishetty and T P Sreeraj, PRD, 97, 074511 (2018)) Sreeraj T P Weak coupling limit of 2 + 1 , SU (2) lattice gauge theory and mass

  8. PS-lattice=original lattice • PS lattice reduces to the original lattice by a gauge fixing. 1 2 Sreeraj T P Weak coupling limit of 2 + 1 , SU (2) lattice gauge theory and mass

  9. PS-lattice • Lattice after splitting each site: • plaquette → octagon f e g d n 2 m h 2 n 1 ¯ c 2 3 a b 3 3 1 1 ¯ ¯ 1 1 • 3 possible point splitting schemes at each site → large number of unitarily equivalent Hilbert spaces. Sreeraj T P Weak coupling limit of 2 + 1 , SU (2) lattice gauge theory and mass

  10. Schwinger Bosons. • E L , U , E R → a † α ( L ) , a † ; a † α ( R ) α ( L / R ) − Harmonic oscillator doublets! a † a † α ( L ) α ( R ) N L = N R E 2 L = E 2 E a E a R L R L ≡ a † ( L ) σ a R ≡ a † ( R ) σ a E a E a 2 a ( L ) , 2 a ( R ) . � N � E 2 = N 2 + 1 2 � � � � a † a † a † 1 1 2 ( L ) a 1 ( L ) 1 ( R ) 2 ( R ) U = � ˆ � ˆ ( prepotential rep ) − a † 1 ( L ) a 2 ( L ) a 2 ( R ) − a 1 ( R ) N + 1 N + 1 � �� � � �� � U L U R [ Manu Mathur, J.phys A(2005), Phys. Lett. B (2007), Nucl.Phys.B(2007) Ramesh Anishetty, Manu Mathur, Indrakshi. R, JMP(2009),J.Phys(2009),JMP(2010) ] • Under gauge transformations: U → Λ L U Λ † R a ( L ) → Λ L a ( L ) , a ( R ) → Λ R a ( R ) Sreeraj T P Weak coupling limit of 2 + 1 , SU (2) lattice gauge theory and mass

  11. Gauge invariant basis with Schwinger Bosons • At a 3-vertex: l 1¯ 1 1 ¯ 1 l 31 l ¯ 13 3 • Normalized gauge invariant states at a 3-vertex: l 1¯ 1 ( a † [¯ l ¯ 13 ( a † [3] ǫ a † [1]) l 31 13 , l 31 � = ( a † [1] ǫ a † [¯ 1] ǫ a † [3]) 1]) | l 1¯ 1 , l ¯ | 0 � ≡ | n 1 , n ¯ 1 , n 3 = m � � ( l 1¯ 1 + l 31 + l ¯ 13 + 1)!( l 1¯ 1 )!( l 31 )!( l 23 )! 1 , n 3 gives the number of harmonic oscillators on the link 1 , ¯ • n 1 , n ¯ 1 , 3. n 1 = l 12 + l 31 n 2 = l 23 + l 12 n 3 = m = l 31 + l 23 (Ramesh Anishetty and T P Sreeraj, PRD, 97, 074511 (2018)) Sreeraj T P Weak coupling limit of 2 + 1 , SU (2) lattice gauge theory and mass

  12. l ¯ l ¯ 13 23 ¯ 2 ¯ a 3 b 1 1 2 l 31 l 32 • Equivalent descriptions based on: 1 l ij satisfying the link condition : l 31 [ a ] + l ¯ 13 [ a ] = n 3 ( ≡ m ) = l 32 [ b ] + l ¯ 23 [ b ] l ij into a link = l ij going out = ⇒ Closed Electric flux loops. 2 n i , m -local quantum numbers satisfying triangle inequalities at each site: | n i − n ¯ i | ≤ m ≤ n i + n ¯ i Sreeraj T P Weak coupling limit of 2 + 1 , SU (2) lattice gauge theory and mass

  13. Action of Hamiltonian on the number basis. � ˆ � ˆ • E 2 N i N i i = 2 + 1 diagonal. 2 • TrU p = TrU o changes n i , m at each link along a plaquette by ± 1. ± ± ± = C TrU o ± ± ± ± ± Sreeraj T P Weak coupling limit of 2 + 1 , SU (2) lattice gauge theory and mass

  14. Phases N i , e i ˆ φ ] = e i ˆ • We define phase operators satisfying : [ ˆ [ ˆ φ M , e i ˆ χ ] = e i ˆ χ χ φ m n i n ¯ i � � � � e i ˆ � � D e i ˆ χ φ 0 0 � F TrU o | n i , n ¯ i , m � = Tr | n i , n ¯ i , m � e − i ˆ e − i ˆ χ 0 F D φ 0 oct � �� � P =ˆ ˆ L χ ˆ V ˆ L φ � � ( n i + n ¯ i + m + 3)( n i − n ¯ i + m + 1) ( n ¯ i − n i + m + 1)( n ¯ i + n i − m + 1) D = F = 4( m + 1)( n i + 1) 4( m + 1)( n i + 1) Sreeraj T P Weak coupling limit of 2 + 1 , SU (2) lattice gauge theory and mass

  15. Path integral in phase space • Path integral is constructed in phase space by usual time slicing and sandwiching eigenbasis of the number and phase basis. • Path integral in phase space is : � ��� � � � �� � � g 2 ′ χ )+ ˜ � i ( n 1 ˙ φ 1 + n 2 ˙ n 2 1 ( s )+ n 2 1 � � φ 2 + m ˙ 2 ( s ) + � 2 − Tr − dt P � 2 g 2 2 s oct oct Z = D φ i D χ e n 1 , n 2 , m n 1 , n 2 , m should satisfy triangle inequality. Sreeraj T P Weak coupling limit of 2 + 1 , SU (2) lattice gauge theory and mass

  16. Weak coupling analysis • When g → 0, � n 1 � = � n 2 � = N , � m � = 2 N , N large , φ i , χ small gives � � e i ˆ � � e i ˆ χ � � D φ � 1 � F 0 P = → (1) e − i ˆ e − i ˆ χ 0 1 F D φ � ( n i + n ¯ i + m + 3)( n i − n ¯ i + m + 1) D = ∼ 1 4( m + 1)( n i + 1) � ( n ¯ i − n i + m + 1)( n ¯ i + n i − m + 1) 1 F = ∼ √ 4( m + 1)( n i + 1) 2 N attains the minimum of the magnetic term. • Splitting fields into mean field and fluctuations. n i = N + ˜ n i m = 2 N + ˜ m √ D ∼ o (1) F ∼ o (1 / 2 N ) (2) • Redefine φ i , χ → g φ i , g χ . Sreeraj T P Weak coupling limit of 2 + 1 , SU (2) lattice gauge theory and mass

  17. Weak coupling Vacuum • � n 1 � = � n 2 � = N , � m � = 2 N N = ⇒ all electric flux into a site in x direction goes to y direction and vice 2 N versa N N = ⇒ small electric loops. N • Vacuum dominated by small (spatially) electric flux loops containing huge fluxes. (in the unsplit lattice) Sreeraj T P Weak coupling limit of 2 + 1 , SU (2) lattice gauge theory and mass

  18. Fluctuations • Dominant fluctuations: + - - - + + + + - - + + - - + - • sub dominant fluctuations of order 1 N : − − − f ′ + · · · 1 Each flip gives a factor of N . + − √ 2 f + + + Sreeraj T P Weak coupling limit of 2 + 1 , SU (2) lattice gauge theory and mass

  19. • We now make an expansion in 1 N and g . After a few field redefinitions gives : � 1 � � � �� � m 2 + V ( φ 1 , φ 2 , χ ) 2 − Tr P ≈ 4 N 2 ˜ (3) �� V ( φ 1 , φ 2 , χ ) = g 2 φ 2 − 1 φ 1 + 1 �� 2 � � � (∆ 1 2 ∆ 2 χ − ∆ 2 2 ∆ 1 χ ) 2 + 1 � ( φ 1 + 1 2 ∆ 1 χ ) 2 + ( φ 2 − 1 � 2 ∆ 2 χ ) 2 + χ 2 � 16 N �� φ 2 − 1 φ 1 + 1 � 2 � − (∆ 1 ∆ 2 χ ) 2 � � � � − ∆ 1 2 ∆ 2 χ − ∆ 2 2 ∆ 1 χ + ∆ 1 ∆ 2 χ �� = g 2 � 2 + 1 � � 2 � 2 + χ 2 � � φ ′ 2 1 + φ ′ 2 ∆ 1 φ ′ 2 − ∆ 2 φ ′ ∆ 1 φ ′ 2 − ∆ 2 φ ′ 16 − 1 + ∆ 1 ∆ 2 χ 1 2 N � − (∆ 1 ∆ 2 χ ) 2 (4) Sreeraj T P Weak coupling limit of 2 + 1 , SU (2) lattice gauge theory and mass

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend