we present physical onsets of novel integrable
play

We present physical onsets of novel integrable generalizations of - PDF document

Self-Induced Transparency (SIT) in a Dispersive Medium A. A. Zabolotskii Institute of Automation & Electrometry of Siberian Branch of the RAS, Academic Koptug ave.1, 690090 Novosibirsk, Russian Federation (Dated:) Abstract We present


  1. Self-Induced Transparency (SIT) in a Dispersive Medium A. A. Zabolotskii ∗ Institute of Automation & Electrometry of Siberian Branch of the RAS, Academic Koptug ave.1, 690090 Novosibirsk, Russian Federation (Dated:) Abstract We present physical onsets of novel integrable generalizations of the Maxwell-Bloch equa- tions describing electromagnetic field interac- tion with a two-level systems (TLS). ∗ Electronic address: zabolotskii@iae.nsk.su 1

  2. Self-induced-transparency (SIT) soliton phenomenon in two- level atomic systems is one of the most well-known coherent pulse propagation phenomena. S. L. McCall and E. L. Hahn, Phys. Rev. Lett. 18 , 908 (1967). 2. Integrable Maxwell-Bloch equations (MBE) in a two-level system (TLS) with slow varying envelope approximation. G. L. Lamb. Jr, Rev. Mod. Phys. 43 , 99 (1971). 3. Integrable generalizations of the MBEs in TLS. A. A. Zabolotskii, Phys. Lett. A 124 , 500 (1987).(Nonlinear Stark shift). M. Agrotis, N.M. Ercolani, S.A. Glasgow, J.V. Moloney, Physica D, 138 134 (2000).(Permanent dipole momentum) A.A. Zabolotskii, JETP Lett. 77 , 464 (2003).(Two polarizations) H. Steudel, A.A. Zabolotskii, R. Meinel, Phys. Rev. E 72 , 056608 (2005). A.A. Zabolotskii, Phys. Rev. E 77 , 036603 (2008).(Two polariza- tions + permanent dipole). + N-level systems, + unified models (Nonlinear Schr odinder + Maxwell-Bloch). 2

  3. I. DISPERSIVE HOST MEDIUM The Maxwell equation is ∂ 2 E ∂ 2 E ∂ 2 P nl ∂x 2 − 1 ∂t 2 = 4 πN ∂t 2 , (1) c 2 c 2 here N is a density of the TLS. Nonlinear part of the polarizability is � t ǫ ( t − t ′ ) P TLS ( x, t ′ ) dt ′ P nl ( x, t ) = (2) 0 The susceptibility ǫ ( t ) describes the retarded reaction. For a TLS P TLS = ( d 21 ρ 12 + d 12 ρ 21 ), where d 12 = d ∗ 21 are the elements of the dipole matrix d ij . ρ ij , i, j = 1 , 2 is the density matrix of the TLS. Dielectric medium � � ∆ ǫ p ω 2 p ǫ Lorentz ( ω ) = ǫ 0 ǫ ∞ + , (3) p − ω 2 − 2 i Γ p ω ) ( ω 2 Present the electromagnetic field amplitude as � E ( x, t ) e i ( k 0 x − ω 0 t ) + E ∗ ( x, t ) e − i ( k 0 x − ω 0 t ) � E ( x, t ) = 1 , (4) 2 where ± ω 0 and ± k 0 are the carrying frequencies and the wave vectors, respectively, ω 0 = ck 0 . E ( x, t ) is the slow envelope: � � � � � ∂ 2 E � � � ∂ E � � � � � ≪ ω 0 � , (5) � � ∂t 2 ∂t � � � � � ∂ 2 E � � � ∂ E � � � � � ≪ k 0 � . (6) � � ∂x 2 ∂x 3

  4. Let � S ( x, t ) e i ( k 0 x − ω 0 t ) + S ( x, t ) ∗ e − i ( k 0 x − ω 0 t ) � P TLS ( x, t ) = d 12 , (7) 2 S ( x, t ) is the slow amplitude of off-diagonal elements of the density matrix ρ 12 ( x, t ): ρ 12 ( x, t ) = S ( x, t ) e i ( k 0 x − ω 0 t ) , ρ 21 ( x, t ) = S ∗ ( x, t ) e − i ( k 0 x − ω 0 t ) . (8) Neglect the terms ( | ∂ t S | /ω 0 ) n , n = 1 , 2, ( | ∂ t ǫ ( t ) | /ω 0 ) n and ( | ∂ t S ( t ) | /ω 0 ) n , n = 1 , 2. Let � � � ∂ 2 ǫ � ǫ ( ω ) = ǫ ( ω 0 )+ ∂ǫ ( ω − ω 0 )+ 1 � � ( ω − ω 0 ) 2 + · · · . (9) � � ∂ω 2 ∂ω 2 ω = ω 0 ω = ω 0 Then � � � k P nl ( x, t ) = e i ( k 0 x − ω 0 t ) � ∂ k ǫ � 1 i ∂ � d 21 S ( x, t )( x, t ) � ∂ω k k ! ∂t ω = ω 0 k � � � k +e − ( k 0 x − ω 0 t ) � ∂ k ǫ � 1 i ∂ � d 21 S ∗ ( x, t )( x, t ) . (10) � ∂ω k k ! ∂t ω = − ω 0 k From Maxwell equations we get � 1 � = − 2 πNω 2 ∂ E ∂t + ∂ E 0 d 12 ie i ( k 0 x − ω 0 t ) c 2 c ∂x � � � ∂ � k e i ( k 0 x − ω 0 t ) � i k q k × S ( x, t ) , (11) ∂t k where � ∂ k ǫ ( ω ) � q k = 1 � . (12) � ∂ω k k ! ω = ω 0 4

  5. Maxwell equation, neglecting all terms with k > 2, � � ∂x = 2 πω 2 ∂ 2 S 1 ∂ E ∂t + ∂ E 0 Nd 21 ∂S iq 0 S − q 1 ∂t − iq 2 . (13) k 0 c 2 ∂t 2 c The Bloch equations are: ∂ t ρ 12 = − iω 12 ρ 12 − i ( ρ 11 − ρ 22 ) d 12 � E, (14) ∂ t ρ 11 = id 12 � E ( ρ 21 − ρ 12 ) , (15) ∂ t ρ 22 = id 12 � E ( ρ 12 − ρ 21 ) , (16) here ω 12 is a frequency of the two-level transition. Novel integrable dispersive Maxwell-Bloch equations (DMBEs): ∂S ∂τ = iνS − i U S z , (17) ∂S z ∂τ = i ( U S ∗ − U ∗ S ) , (18) ∂ 2 S ∂ U ∂S ∂χ = ir 0 S + r 1 ∂τ + ir 2 (19) ∂τ 2 , here τ = ( t − x/c ) ω R , ν = ( ω 0 − ω 12 ) /ω R , S z = ρ 11 − ρ 22 , and U = d 12 E , (20) � ω R r 0 = q 0 , r 1 = − q 1 ω R , r 2 = − q 2 ω 2 R , (21) ∂ c � ω R ∂ ∂χ = ∂x. (22) 2 πd 2 12 ω 0 N 5

  6. II. A ZERO CURVATURE PRESENTATION r 0 , r 1 , r 2 , ν ∈ R , r 2 � = 0 , r 0 − νr 1 − ν 2 r 2 � = 0.   − iλ m 0 ( λ + b − ) U  Φ ,  ∂ τ Φ = (23) m 0 ( λ + b + ) U ∗ iλ   iα 0 S z µ ( α 1 S + ir 2 ∂ τ S )  Φ ,  ∂ χ Φ = A Φ ≡ (24) µ ( α 1 S ∗ − ir 2 ∂ τ S ∗ ) − iα 0 S z � µ = m 0 ( λ + b − ) , � µ = m 0 ( λ + b + ) , (25) � r 2 b ∓ = r 1 1 + 4 r 0 r 2 ∓ , (26) 4 r 2 4 r 2 2 r 2 m 2 0 = , (27) r 0 − νr 1 − ν 2 r 2 α 0 = r 0 − 2 r 1 λ − 4 r 2 λ 2 α 1 = r 0 + νr 1 + 2 νr 2 λ , . (28) 2( ν + 2 λ ) ν + 2 λ Spectral problem is generalization of the Wadati-Konno-Ichikawa (WKI) problem. Inverse transform technique for ( b ± = 0) by K. Konno et al, (1981). Reduction is : ν = r 1 = 0, Im ( i U ) = 0 ⇒ ∂ 2 θ ∂ 2 ∂τ∂χ = sin θ + r 2 ∂τ 2 sin θ, (29) i U = ∂ τ θ . A. Fokas (1995). Eq. (29) transforms to Rabelo equations (R. Beals, M. Rabelo (1989)). 6

  7. There are 4 sets of symmetries determines by constants. I. Abnormal dispersion (subindex below 1): r 2 < 0 , m 2 0 < 0 , r 2 1 − 4 r 0 | r 2 | < 0 . (30) � 4 r 0 | r 2 | − r 2 1 b ∓ = β 0 ± iβ 1 , β 1 = (31) 4 | r 2 | II. Normal dispersion (subindex 2): r 2 > 0 , m 2 0 > 0 , r 2 1 + 4 r 0 r 2 > 0 . (32) � 4 r 0 r 2 + r 2 1 b ∓ = β 0 ± β 2 , β 2 = , (33) 4 r 2 β 0 = r 1 . (34) 4 r 2 λ → λ − β 0 + gauge transform:    e iβ 0 τ 0  Φ 1 , 2 , Φ 1 , 2 = (35) e − iβ 0 τ 0   − iλ ( λ + iβ 1 ) W 1  Φ 1 ,  ∂ τ Φ 1 = (36) − ( λ − iβ 1 ) W ∗ iλ 1 where W 1 = i | m 0 | U e − 2 iβ 0 τ , (37) 7

  8. and   − iλ ( λ + β 2 ) W 2   Φ 2 , ∂ τ Φ 2 = (38) ( λ − β 2 ) W ∗ iλ 2 where W 2 = | m 0 | U e − i 2 β 0 τ . (39) Introduce the new variables T, Θ and the new functions F 1 , 2 ( χ, τ ), G 1 , 2 ( χ, τ ) as � τ � τ G − 1 G − 1 1 χ, τ ′ ) dτ ′ , Θ = 2 ( χ, τ ′ ) dτ ′ , T = (40) 0 0 W 1 , 2 1 F 1 , 2 = � 1 ± | W 1 , 2 | 2 , G 1 , 2 = � 1 ± | W 1 , 2 | 2 . (41) Then   − iλG 1 ( λ + iβ 1 ) F 1  Φ 1 ,  ∂ T Φ 1 = (42) − ( λ − iβ 1 ) F ∗ iλG 1 1 and   − iλG 2 ( λ + β 2 ) F 2   Φ 1 , ∂ Θ Φ 2 = (43) ( λ − β 2 ) F ∗ iλG 2 2 F 1 , 2 = 0 , S z = − 1 , S = 0 , T, Θ → ±∞ . (44) The ISTM applications by means of solution of the Marchenko equations or Riemann-Hilbert problem give 8

  9. solitons in implicit form. Abnormal dispersion ( r 2 < 0) F 1 ( τ, χ ) = 2 ζ 0 e − ic 1 − iψ 1 cosh( ψ ) , (45) cosh( ψ ) 2 + ζ 2 0 G 1 ( τ, χ ) = cosh( ψ ) 2 − ζ 2 0 , (46) cosh( ψ ) 2 + ζ 2 0 � � 0 − 4 | r 2 | η 2 T − r ′ ψ = 2 η ν ′ 2 + 4 η 2 χ + c 0 , (47) 0 − 4 | r 2 | η 2 ψ 1 = ν ′ r ′ ν ′ 2 + 4 η 2 χ, (48) η ζ 0 = η + | β 1 | . (49) Time dependence is obtained by integration of ∂ τ T = G − 1 1 ( τ ). Soliton solution � � 2 ζ 0 ζ 0 ψ − � arctanh � tanh[ ψ ] = 2 η [ τ − τ 0 ( χ )] , (50) ζ 2 ζ 2 0 + 1 0 + 1 τ 0 ( χ ) = − ψ ( τ = 0) / (2 η ). G 1 ( τ, χ ) = − 2 iζ 0 e 2 iβ 0 τ − ic 1 − iψ 1 cosh( ψ ) W = F 1 ( τ, χ ) � � , (51) cosh 2 ( ψ ) − ζ 2 | m 0 | 0 9

  10. Figure 1: η = 1 . 0 . Modulus of the soliton amplitude U a vs τ is shown by the dashed line for | r 2 | = 0 . 0001, by pointed line for | r 2 | = 0 . 02, and by solid line for | r 2 | = 2 . 0 . III. SOLITON. NORMAL DISPERSION ( r 2 > 0 ) C 2 ( χ ) = b 2 ( χ ; iη ) /∂ λ a 2 ( χ ; λ ) | λ = iη � = 0 , (52) where a 2 ( χ ; iη ) = 0. 10

  11. Denote | C | 2 ω 2 e − 2 i ( λ ∗ − λ )(Θ − V 1 χ ) = e − 2 θ , (53) β 2 − λ ∗ β 2 + λ = e − 2 iδ , (54) Im λ κ = | β 2 + λ | , (55) C (0) = e iδ 1 | C (0) | . (56) Then the soliton is D 2 ( τ ) = | cosh( θ + iδ ) | 2 + κ 2 (57) | cosh( θ + iδ ) | 2 − κ 2 F 2 ( τ ) = 2 κ cosh ( θ + iδ ) e 2 iV 2 χ − iδ − iδ 1 . (58) | cosh( θ + iδ ) | 2 − κ 2 For Im η = 0 , r 1 = 0 , ν = 0 we have V 2 = 0, δ = 0 , β 2 = � 1 / 2 r 0 /r 2 , 2 η √ r 2 κ = � , (59) 4 η 2 r 2 + r 0 � � Θ − r 0 + 4 r 2 η 2 θ = 2 η χ . (60) 4 η 2 The modulus of the soliton � 1 + 4 η 2 r 2 cosh( θ ) 2 η U n ( τ, χ ) = , (61) (1 + 4 η 2 r 2 ) cosh 2 ( θ ) + 4 η 2 r 2 θ is found by integration of D − 1 = ∂ τ Θ. 2 11

  12. Figure 2: η = 2 . 0 . Modulus of the soliton amplitude U n vs τ is shown by the pointed line for r 2 = 0 . 001, by dashed line for r 2 = 0 . 05, and by solid line for r 2 = 0 . 2 (Topless soliton). 12

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend