we also know mssm plus gauge singlets is compelling
play

We also know MSSM (plus gauge singlets) is compelling effective - PowerPoint PPT Presentation

Mixed axion/axino cold dark matter in SUSY: with implications for LHC Howard Baer University of Oklahoma OUTLINE old ideas from 1970s strong CP problem and PQWW solution the PQMSSM axion/axino CDM mSUGRA (CMSSM) Effective


  1. Mixed axion/axino cold dark matter in SUSY: with implications for LHC Howard Baer University of Oklahoma OUTLINE ⋆ old ideas from 1970s ⋆ strong CP problem and PQWW solution ⋆ the PQMSSM ⋆ axion/axino CDM ⋆ mSUGRA (CMSSM) ⋆ Effective SUSY ⋆ Yukawa-unified SUSY 1 Howie Baer, GGI LHC mini workshop, June 10, 2010

  2. Old ideas from the dawn of time: (1970s) ⋆ renormalizable gauge theories ⋆ QCD ⋆ the Standard Model ⋆ supersymmetry ⋆ GUTs ⋆ superstrings ⋆ see-saw neutrinos ⋆ PQ strong CP solution 2 Howie Baer, GGI LHC mini workshop, June 10, 2010

  3. Origin of strong CP problem ⋆ QCD ∋ U (2) V × U (2) A global symmetry (2 light quarks) ⋆ U (2) V = SU (2) I × U (1) B realized; U (2) A broken spontaneously ⋆ expect 4 Goldstone bosons: πs and η , but instead m η ≫ m π : QCD does not respect somehow U (1) A (Weinberg) ⋆ t’Hooft resolution: QCD θ vacuum ⇒ theory not U (1) A symmetric, and m η ≫ m π explained ⋆ Generate additional term to QCD Lagrangian: L ∋ θ g 2 32 π F µν A ˜ F Aµν s • violates P and T ; conserves C ⋆ In addition, weak interactions ⇒ L ∋ Arg detM g 2 32 π F µν A ˜ F Aµν s • ¯ θ = θ + Arg detM ⋆ experiment: neutron EDM ⇒ ¯ < ∼ 10 − 10 θ ⋆ How can this be? The strong CP problem 3 Howie Baer, GGI LHC mini workshop, June 10, 2010

  4. Solutions to the strong CP problem ⋆ Anthropic: ¯ θ luckily small ⋆ Spontaneously broken CP : induced ¯ θ is small (loop level) ⋆ a new chiral symmetry U P Q (1) exists (Peccei-Quinn); U P Q (1) spontaneously broken at scale f a ( ∼ 10 9 − 10 12 GeV) ⋆ Goldstone boson field a ( x ) , the axion must exist (Weinberg, Wilczek) g 2 ⋆ L ∋ − 1 32 π 2 F µν A ˜ 2 ∂ µ a∂ µ a + ξ a F Aµν + L int s f a ⋆ V eff ∼ − (1 − cos(¯ θ + ξ a f a )) ⋆ axion field settles to minimum of potential: � a � = − f a ξ ¯ θ ⋆ strong CP problem solved! a = � ∂ 2 V eff ⋆ m 2 ∂a 2 � 4 Howie Baer, GGI LHC mini workshop, June 10, 2010

  5. Axion cosmology ⋆ Axion field eq’n of motion: θ = a ( x ) /f a – ¨ θ + 3 H ( T ) ˙ ∂V ( θ ) 1 θ + = 0 f 2 ∂θ a – V ( θ ) = m 2 a ( T ) f 2 a (1 − cos θ ) – Solution for T large, m a ( T ) ∼ 0 : θ = const. f a /N (GeV) 12 11 10 9 10 10 10 10 – m a ( T ) turn-on ∼ 1 GeV 0 10 2 (vacuum mis-alignment) WMAP 5: Ω CDM h 2 = 0.110 ± 0.006 ⋆ a(x) oscillates, -1 10 -2 10 creates axions with � p ∼ 0 : -3 10 production via vacuum mis-alignment Ω a h -4 10 � � 7 / 6 ⋆ Ω a h 2 ∼ 1 6 × 10 − 6 eV -5 θ 2 i h 2 10 -5 -4 -3 10 10 10 2 m a m a (eV) > ⋆ astro bound: stellar cooling ⇒ f a ∼ 10 9 GeV 5 Howie Baer, GGI LHC mini workshop, June 10, 2010

  6. We also know MSSM (plus gauge singlets) is compelling effective theory between M weak and M GUT 6 Howie Baer, GGI LHC mini workshop, June 10, 2010

  7. Most analyses work in mSUGRA (CMSSM) model • m 0 , m 1 / 2 , A 0 , tan β, sign ( µ ) 7 Howie Baer, GGI LHC mini workshop, June 10, 2010

  8. Results of χ 2 fit using τ data for a µ : mSugra with tan β = 10, A 0 = 0, µ > 0 mSugra with tan β = 10, A 0 = 0, µ > 0 mSugra with tan β = 54, A 0 = 0, µ > 0 mSugra with tan β = 54, A 0 = 0, µ > 0 2000 2000 2000 2000 14 1 not LSP 1 not LSP 8 1750 1750 1750 1750 12 6 Ζ Ζ ~ ~ 1500 1500 1500 1500 10 1250 1250 1250 1250 4 8 ln( χ 2 /DOF) m 1/2 (GeV) ln( χ /DOF) m 1/2 (GeV) 1000 1000 1000 1000 6 2 750 750 750 750 4 0 500 500 500 500 2 250 250 -2 250 250 No REWSB No REWSB 0 0 0 0 0 0 0 1000 1000 2000 2000 3000 3000 4000 4000 5000 5000 6000 6000 0 0 1000 1000 2000 2000 3000 3000 4000 4000 5000 5000 6000 6000 m 0 (GeV) m 0 (GeV) m h =114.1GeV LEP2 excluded m h =114.1GeV LEP2 excluded SuperCDMS CDMSII CDMS SuperCDMS CDMSII CDMS • HB, C. Balazs: JCAP 0305, 006 (2003) • numerous recent χ 2 , MCMC fits to find preferred regions 8 Howie Baer, GGI LHC mini workshop, June 10, 2010

  9. Z 1 h 2 as surface in m 0 vs. m 1 / 2 space Ω e • tan β = 10 , A 0 = 0 , µ > 0 (HB, A. Box) 9 Howie Baer, GGI LHC mini workshop, June 10, 2010

  10. Fine-tuning in mSUGRA with neutralino CDM ⋆ contours of Ω e Z 1 h 2 Z 1 h 2 ∂ log Ω e ⋆ regions of fine-tune: ∆ ≡ : (HB, A. Box) ∂ log a i 10 Howie Baer, GGI LHC mini workshop, June 10, 2010

  11. Fine-tuning zoomed in stau-co-annihilation ⋆ contours of Ω e Z 1 h 2 Z 1 h 2 ∂ log Ω e ⋆ regions of fine-tune: ∆ ≡ ∂ log a i 11 Howie Baer, GGI LHC mini workshop, June 10, 2010

  12. General scan over 19 param. MSSM ⋆ dimensionful param’s defined at M GUT • m Q 1 , m U 1 , m D 1 , m L 1 , m E 1 : 0 → 3500 GeV • m Q 3 , m U 3 , m D 3 , m L 3 , m E 3 : 0 → 3500 GeV • M 1 , M 2 , M 3 : 0 → 3500 GeV • A t , A b , A τ : − 3500 → 3500 GeV • m H u , m H d : 0 → 3500 GeV • tan β : 2 → 60 ⋆ m f W 1 > 103 . 5 GeV ⋆ m f W 1 > 91 . 9 GeV (wino-like) ⋆ m h > 111 GeV 12 Howie Baer, GGI LHC mini workshop, June 10, 2010

  13. 8 10 Bino Wino 6 Higgsino 10 Mixed 4 10 2 Ω h 2 10 0 10 -2 10 -4 10 0 400 800 1200 1600 m Z 1 ~ 13 Howie Baer, GGI LHC mini workshop, June 10, 2010

  14. General MSSM 19 param. scan Z 1 h 2 • histogram of models vs. Ω e Bino 800 Wino Total Number of Models Higgsino Mixed 600 400 200 0 7 10 -3 10 -2 10 -1 10 0 10 1 10 2 10 3 10 4 10 5 10 6 10 8 10 2 Ω h 14 Howie Baer, GGI LHC mini workshop, June 10, 2010

  15. Why WIMP miracle really is a miracle for SUSY Z 1 h 2 with m e • histogram of models vs. Ω e Z 1 < 500 GeV Bino 300 Wino Total Number of Models Higgsino Mixed 200 100 0 7 10 -3 10 -2 10 -1 10 0 10 1 10 2 10 3 10 4 10 5 10 6 10 8 10 2 Ω h 15 Howie Baer, GGI LHC mini workshop, June 10, 2010

  16. Gravitinos: spin- 3 2 partner of graviton • gravitino problem in generic SUGRA models: overproduction of ˜ G followed by late ˜ G decay can destroy successful BBN predictions: upper bound on T R (see Kawasaki, Kohri, Moroi, Yotsuyanagi; Cybert, Ellis, Fields, Olive) 16 Howie Baer, GGI LHC mini workshop, June 10, 2010

  17. Gravitinos as dark matter: again the gravitino problem • neutralino production in generic SUGRA models: followed by late time Z 1 → ˜ � G + X decays can destroy successful BBN predictions: (see Kawasaki, Kohri, Moroi, Yotsuyanagi) 17 Howie Baer, GGI LHC mini workshop, June 10, 2010

  18. Various leptogenesis scenarios • Upper bound on T R from BBN is below that for successful thermal ∼ 10 10 GeV > leptogenesis: need T R (Buchmuller, Plumacher) • Alternatively, one may have non-thermal leptogenesis where inflaton φ → N i N i decay (Lazarides, Shafi; Kumekawa, Moroi, Yanagida) • additional source of N i in early universe allows lower T R : � � � 2 m N 1 � � � n B T R m ν 3 ≃ 8 . 2 × 10 − 11 × δ eff (1) 10 6 GeV s m φ 0 . 05 eV √ Hℓ D -flat direction: T R ∼ 10 6 − 10 8 GeV • Also, AD leptogenesis in φ = allowed (Dine, Randall, Thomas; Murayama, Yanagida) • WMAP observation: n b /s ∼ 0 . 9 × 10 − 10 ⇒ T R ∼ 10 6 GeV > 18 Howie Baer, GGI LHC mini workshop, June 10, 2010

  19. PQMSSM: Axions + SUSY ⇒ Axino ˜ a dark matter • axino is spin- 1 2 element of axion supermultiplet ( R -odd; can be LSP) – Raby, Nilles, Kim – Rajagopal, Wilczek, Turner • m ˜ a model dependent: keV → GeV • � f /N = 10 1 2 Z 1 → ˜ aγ a GeV 1 10 0 10 a production via � • non-thermal ˜ Z 1 decay: f /N = 10 1 1 a GeV -1 10 τ (s) -2 • axinos inherit neutralino number density 10 f /N = 10 1 0 a GeV -3 10 h 2 = m ˜ • Ω NT P Z 1 h 2 : Z 1 Ω e a -4 ˜ a m e 10 f /N = 10 9 a GeV -5 10 – Covi, Kim, Kim, Roszkowski 50 60 70 80 90 m χ 0 (GeV) ~ 1 19 Howie Baer, GGI LHC mini workshop, June 10, 2010

  20. Thermally produced axinos ⋆ If T R < f a , then axinos never in thermal equilibrium in early universe ⋆ Can still produce ˜ a thermally via radiation off particles in thermal equilibrium ⋆ Brandenberg-Steffen calculation: � 1 . 108 � � 10 11 GeV � 2 � � � � m ˜ T R h 2 ≃ 5 . 5 g 6 a Ω T P s ln (2) 10 4 GeV ˜ a g s f a /N 0 . 1 GeV TP h 2 = 0.001 (solid), 0.01 (dashed), 0.1 (dashed-dotted) Ω a ~ m a ~ (GeV) = 0.0001 (purple), 0.01 (green), 1 (maroon) 9 10 8 10 = 0.1 7 2 10 h P T = 0.0001 (GeV), Ω ~ T R (GeV) a 6 10 = 0.01 2 5 h P 10 T m ~ = 0.01 (GeV), Ω a ~ a 4 10 m 3 ~ a 10 2 10 9 10 11 12 10 10 10 10 f a /N (GeV) 20 Howie Baer, GGI LHC mini workshop, June 10, 2010

  21. mSUGRA model with mixed axion/axino CDM: m ˜ a fixed ⋆ ( m 0 , m 1 / 2 , A 0 , tan β, sgn ( µ )) = (1000 GeV , 300 GeV , 0 , 10 , +1) ⋆ Ω a h 2 + Ω T P h 2 + Ω NT P h 2 = 0 . 11 a ˜ a ˜ ⋆ model with mainly axion CDM seems favored! m a ~ = 100 keV (solid), 1 MeV (dashed) 0 7 10 10 2 WMAP Ω CDM h -1 10 Ω a TP h 2 ~ -2 6 10 10 2 Ω a h -3 10 -4 5 10 10 T R (GeV) NTP h 2 Ω a 2 ~ -5 Ω h 10 -6 4 10 10 -7 10 -8 3 10 10 -9 10 (a) (b) -10 2 10 10 9 10 11 12 9 10 11 12 10 10 10 10 10 10 10 10 f a /N (GeV) f a /N (GeV) 21 Howie Baer, GGI LHC mini workshop, June 10, 2010

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend