w
play

w = 0 l h x ijl s l Elena Mumford In total we move from v i to v i - PowerPoint PPT Presentation

( x + pA + qB, y + qA pB ) for all A, B Z 16 th Q ( s ) E = Q ( s ) e 1 , . . . , e k We have Every element of Q ( s ) International Symposium i x = 0 y i = j y ij e j for all y i Y on Graph can be


  1. ( x + pA + qB, y + qA − pB ) for all A, B ∈ Z 16 th Q ( s ) � E � = Q ( s ) � e 1 , . . . , e k � We have Every element of Q ( s ) International Symposium δ i � x � = 0 y i = � j y ij e j for all y i ∈ Y on Graph can be written as p/q , δ i y = 0 Drawing Moreover from what we wrote above we have: where p, q ∈ O Q ( s ) . 0 ≤ l ≤ h x ijl s l and y ij = � 0 ≤ l ≤ h y ijl s l x ij = � � δ i x = pA i + qB i � = 0 GCD is 1. ∆ x = � i,j ∆ x ij e j rizontal, ∆ y i = sa i − b i = 0 , δ i y = qA i − pB i = 0 x ij = a ij /b ij Connected D x = { d x ∈ R : d x = | x ( v lft ) − x ( v ) | , ∀ v ∈ V } a i + sb i = a i + s 2 a i = (1 + s 2 ) a i . y ij = c ij /d ij Rectilinear Graphs on for all odd values of i , 0 < i < n and Point Sets We consider the following cases: ertical, then ∆ x i = a i + sb i = 0 , q ( p 2 + q 2 ) y = A i δ i 1. [ Q ( s ) : Q ] = 1 , s is rational. � δ i sa i − b i = − s 2 b i − b i = − (1+ s 2 ) b i . x = pA i + qB i = 0 δ i y = qA i − pB i � = 0 2. [ Q ( s ) : Q ] < ∞ , s is algebraic over Q . x i , y i ∈ O Q ( s ) � E � 3. [ Q ( s ) : Q ] = ∞ , s is transcendental over Q . 0 ≤ l ≤ h w l s l Maarten L¨ offler � for all even values of i , 0 < i < n . Utrecht University w = 0 ≤ l ≤ h x ijl s l Elena Mumford In total we move from v i to v i +1 x ij = � 0 ≤ l ′≤ h ′ w ′ l ′ s l ′ Technical University Eindhoven over a distance ( a i + sb i , sa i − b i ) � where a i , b i ∈ Z � E � . 0 ≤ l ≤ h y ijl s l the Netherlands y ij = � 1-1

  2. ( x + pA + qB, y + qA − pB ) for all A, B ∈ Z 16 th Q ( s ) � E � = Q ( s ) � e 1 , . . . , e k � We have Every element of Q ( s ) International Symposium δ i � x � = 0 y i = � j y ij e j for all y i ∈ Y on Graph can be written as p/q , δ i y = 0 Drawing Moreover from what we wrote above we have: where p, q ∈ O Q ( s ) . 0 ≤ l ≤ h x ijl s l and y ij = � 0 ≤ l ≤ h y ijl s l x ij = � � δ i x = pA i + qB i � = 0 GCD is 1. ∆ x = � i,j ∆ x ij e j rizontal, ∆ y i = sa i − b i = 0 , δ i y = qA i − pB i = 0 x ij = a ij /b ij Connected D x = { d x ∈ R : d x = | x ( v lft ) − x ( v ) | , ∀ v ∈ V } a i + sb i = a i + s 2 a i = (1 + s 2 ) a i . y ij = c ij /d ij Rectilinear Graphs on for all odd values of i , 0 < i < n and Point Sets We consider the following cases: ertical, then ∆ x i = a i + sb i = 0 , q ( p 2 + q 2 ) y = A i δ i 1. [ Q ( s ) : Q ] = 1 , s is rational. � δ i sa i − b i = − s 2 b i − b i = − (1+ s 2 ) b i . x = pA i + qB i = 0 δ i y = qA i − pB i � = 0 2. [ Q ( s ) : Q ] < ∞ , s is algebraic over Q . x i , y i ∈ O Q ( s ) � E � 3. [ Q ( s ) : Q ] = ∞ , s is transcendental over Q . 0 ≤ l ≤ h w l s l Maarten L¨ offler � for all even values of i , 0 < i < n . Utrecht University w = 0 ≤ l ≤ h x ijl s l Elena Mumford In total we move from v i to v i +1 x ij = � 0 ≤ l ′≤ h ′ w ′ l ′ s l ′ Technical University Eindhoven over a distance ( a i + sb i , sa i − b i ) � where a i , b i ∈ Z � E � . 0 ≤ l ≤ h y ijl s l the Netherlands y ij = � 1-2

  3. 2-1

  4. 2-2

  5. 3-1

  6. 3-2

  7. 3-3

  8. Question: How many orientations can a point set have, such that the maximal axis-parallel graph is connected? 4-1

  9. Question: How many orientations can a point set have, such that the maximal axis-parallel graph is connected? [Therese Biedl, 2007] 4-2

  10. Let’s look at an example point set in all possible orientation. 5-1

  11. 6-1

  12. 6-2

  13. 6-3

  14. 6-4

  15. 6-5

  16. 6-6

  17. 6-7

  18. 6-8

  19. 6-9

  20. 6-10

  21. 6-11

  22. 6-12

  23. 6-13

  24. 6-14

  25. 6-15

  26. 6-16

  27. 6-17

  28. 6-18

  29. 6-19

  30. 6-20

  31. 6-21

  32. 6-22

  33. 6-23

  34. 6-24

  35. 6-25

  36. 6-26

  37. 7-1

  38. Answer: One. 8-1

  39. Answer: One. (up to trivial rotations) 8-2

  40. Start simple: two dimensions, integer coordinates, rotation over 45 ◦ . 9-1

  41. 10-1

  42. 10-2

  43. 11-1

  44. 11-2

  45. 12-1

  46. 12-2

  47. 12-3

  48. 13-1

  49. 13-2

  50. 14-1

  51. 14-2

  52. 14-3

  53. 14-4

  54. 15-1

  55. 15-2

  56. 15-3

  57. That’s good, but what if my coordinates are not integers? 16-1

  58. 17-1

  59. 17-2

  60. 18-1

  61. 18-2

  62. 18-3

  63. 18-4

  64. 18-5

  65. 19-1

  66. 19-2

  67. 19-3

  68. 19-4

  69. 20-1

  70. 20-2

  71. What about other slopes than 45 ◦ ? 21-1

  72. 22-1

  73. 22-2

  74. 23-1

  75. 23-2

  76. 24-1

  77. 24-2

  78. 24-3

  79. 24-4

  80. So, what happens in higher dimensions? 25-1

  81. 26-1

  82. 26-2

  83. 26-3

  84. 26-4

  85. 26-5

  86. 26-6

  87. 26-7

  88. 26-8

  89. 26-9

  90. 26-10

  91. 26-11

  92. 26-12

  93. Any Questions... ? 27-1

  94. 27-2 Any Questions... ?

  95. 27-3 Any Questions... ?

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend