viscosity solutions of path dependent pdes
play

Viscosity Solutions of Path-Dependent PDEs Zhenjie Ren CMAP, Ecole - PowerPoint PPT Presentation

Viscosity Solutions of Path-Dependent PDEs Zhenjie Ren CMAP, Ecole Polytechnique The 3rd young researchers meeting in Probability, Numerics and Finance June 29, 2016 Zhenjie Ren PPDE Le Mans, 29/06/2016 1 / 21 Motivation Table of Contents


  1. Viscosity Solutions of Path-Dependent PDEs Zhenjie Ren CMAP, Ecole Polytechnique The 3rd young researchers meeting in Probability, Numerics and Finance June 29, 2016 Zhenjie Ren PPDE Le Mans, 29/06/2016 1 / 21

  2. Motivation Table of Contents Motivation 1 From PDE to PPDE 2 Application in the control problems with delays 3 Zhenjie Ren PPDE Le Mans, 29/06/2016 2 / 21

  3. Motivation PDE characterization : linear exmaple Linear Expectation � � � v ( t , x ) = E h ( W T ) � W t = x Zhenjie Ren PPDE Le Mans, 29/06/2016 3 / 21

  4. Motivation PDE characterization : linear exmaple Linear Expectation Heat Equation � − ∂ t u − 1 2 D 2 � � v ( t , x ) = E h ( W T ) � W t = x x u = 0, u ( T , x ) = h ( x ) Zhenjie Ren PPDE Le Mans, 29/06/2016 3 / 21

  5. Motivation PDE characterization : linear exmaple Linear Expectation Heat Equation � − ∂ t u − 1 2 D 2 � � v ( t , x ) = E h ( W T ) � W t = x x u = 0, u ( T , x ) = h ( x ) PDE characterization Function v is C 1 , 2 , and is a classical solution of the heat equation. Zhenjie Ren PPDE Le Mans, 29/06/2016 3 / 21

  6. Motivation PDE characterization : linear exmaple Linear Expectation Heat Equation � − ∂ t u − 1 2 D 2 � � v ( t , x ) = E h ( W T ) � W t = x x u = 0, u ( T , x ) = h ( x ) PDE characterization Function v is C 1 , 2 , and is a classical solution of the heat equation. In the linear case, the martingale characterization as an alternative gives quite a lot analytic insight, and can be naturally generalized to the non-Markovian case. Zhenjie Ren PPDE Le Mans, 29/06/2016 3 / 21

  7. Motivation PDE characterization : beyond the linear case Consider a controlled diffusion: � t � t X κ 0 b ( s , X κ 0 σ ( s , X κ t = X 0 + s , κ s ) ds + s , κ s ) dW s for κ ∈ K = { κ : κ t ∈ K for all t ∈ [0 , T ] } . Value function of optimal control � � T t f ( s , X κ s , κ s ) ds + h ( X κ � X κ � � v ( t , x ) = sup κ ∈K E T ) t = x Zhenjie Ren PPDE Le Mans, 29/06/2016 4 / 21

  8. Motivation PDE characterization : beyond the linear case Consider a controlled diffusion: � t � t X κ 0 b ( s , X κ 0 σ ( s , X κ t = X 0 + s , κ s ) ds + s , κ s ) dW s for κ ∈ K = { κ : κ t ∈ K for all t ∈ [0 , T ] } . Value function of optimal control � � T t f ( s , X κ s , κ s ) ds + h ( X κ � � X κ � v ( t , x ) = sup κ ∈K E T ) t = x Hamilton-Jacobi-Bellman Equation b · Du + 1 ( σσ T ) D 2 u � � � � ∂ t u + sup k ∈ K 2 Tr + f = 0 , u ( T , x ) = h ( x ) . Zhenjie Ren PPDE Le Mans, 29/06/2016 4 / 21

  9. Motivation PDE characterization : beyond the linear case Consider a controlled diffusion: � t � t X κ 0 b ( s , X κ 0 σ ( s , X κ t = X 0 + s , κ s ) ds + s , κ s ) dW s for κ ∈ K = { κ : κ t ∈ K for all t ∈ [0 , T ] } . Value function of optimal control � � T t f ( s , X κ s , κ s ) ds + h ( X κ � � X κ � v ( t , x ) = sup κ ∈K E T ) t = x Hamilton-Jacobi-Bellman Equation b · Du + 1 ( σσ T ) D 2 u � � � � ∂ t u + sup k ∈ K 2 Tr + f = 0 , u ( T , x ) = h ( x ) . PDE characterization (under some conditions) Function v is a viscosity solution of the HJB equation. Zhenjie Ren PPDE Le Mans, 29/06/2016 4 / 21

  10. Motivation Non-Markovian model Consider the diffusion X controlled with delay: � t � t X κ 0 b ( s , X κ 0 σ ( s , X κ t = X 0 + s − δ , κ s ) ds + s − δ , κ s ) dW s , κ ∈ K Zhenjie Ren PPDE Le Mans, 29/06/2016 5 / 21

  11. Motivation Non-Markovian model Consider the diffusion X controlled with delay: � t � t X κ 0 b ( s , X κ 0 σ ( s , X κ t = X 0 + s − δ , κ s ) ds + s − δ , κ s ) dW s , κ ∈ K Value function of optimal control � � T t f ( s , X κ s − δ , κ s ) ds + h ( X κ � � v t = sup κ ∈K E T ) � F t Zhenjie Ren PPDE Le Mans, 29/06/2016 5 / 21

  12. Motivation Non-Markovian model Consider the diffusion X controlled with delay: � t � t X κ 0 b ( s , X κ 0 σ ( s , X κ t = X 0 + s − δ , κ s ) ds + s − δ , κ s ) dW s , κ ∈ K Value function of optimal control � � T t f ( s , X κ s − δ , κ s ) ds + h ( X κ � � v t = sup κ ∈K E T ) � F t It is IMPOSSIBLE to find a corresponding PDE of finite dimension state space ! Zhenjie Ren PPDE Le Mans, 29/06/2016 5 / 21

  13. Motivation A first meeting with Path-dependent PDE (PPDE) Linear Expectation: non-Markovian � � � v ( t , ω ) = E ξ ( W T ∧· ) � F t ( ω ) Zhenjie Ren PPDE Le Mans, 29/06/2016 6 / 21

  14. Motivation A first meeting with Path-dependent PDE (PPDE) Linear Expectation: non-Markovian (Path-dependent) Heat Equation � � � − ∂ t u − 1 2 ∂ 2 v ( t , ω ) = E ξ ( W T ∧· ) � F t ( ω ) ωω u = 0, u ( T , ω ) = ξ ( ω ) Zhenjie Ren PPDE Le Mans, 29/06/2016 6 / 21

  15. Motivation A first meeting with Path-dependent PDE (PPDE) Linear Expectation: non-Markovian (Path-dependent) Heat Equation � � � − ∂ t u − 1 2 ∂ 2 v ( t , ω ) = E ξ ( W T ∧· ) � F t ( ω ) ωω u = 0, u ( T , ω ) = ξ ( ω ) How to make sense the equation (definition & existence/uniqueness)? Dupire derviatives, functional Itˆ o calculus ⇒ classical solution Zhenjie Ren PPDE Le Mans, 29/06/2016 6 / 21

  16. Motivation A first meeting with Path-dependent PDE (PPDE) Linear Expectation: non-Markovian (Path-dependent) Heat Equation � � � − ∂ t u − 1 2 ∂ 2 v ( t , ω ) = E ξ ( W T ∧· ) � F t ( ω ) ωω u = 0, u ( T , ω ) = ξ ( ω ) How to make sense the equation (definition & existence/uniqueness)? Dupire derviatives, functional Itˆ o calculus ⇒ classical solution Is there nonlinear extension ? Zhenjie Ren PPDE Le Mans, 29/06/2016 6 / 21

  17. Motivation A first meeting with Path-dependent PDE (PPDE) Linear Expectation: non-Markovian (Path-dependent) Heat Equation � � � − ∂ t u − 1 2 ∂ 2 v ( t , ω ) = E ξ ( W T ∧· ) � F t ( ω ) ωω u = 0, u ( T , ω ) = ξ ( ω ) How to make sense the equation (definition & existence/uniqueness)? Dupire derviatives, functional Itˆ o calculus ⇒ classical solution Is there nonlinear extension ? Zhenjie Ren PPDE Le Mans, 29/06/2016 6 / 21

  18. Motivation A first meeting with Path-dependent PDE (PPDE) Linear Expectation: non-Markovian (Path-dependent) Heat Equation � � � − ∂ t u − 1 2 ∂ 2 v ( t , ω ) = E ξ ( W T ∧· ) � F t ( ω ) ωω u = 0, u ( T , ω ) = ξ ( ω ) How to make sense the equation (definition & existence/uniqueness)? Dupire derviatives, functional Itˆ o calculus ⇒ classical solution Is there nonlinear extension ? Introduce viscosity solutions to PPDE’s Zhenjie Ren PPDE Le Mans, 29/06/2016 6 / 21

  19. From PDE to PPDE Table of Contents Motivation 1 From PDE to PPDE 2 Application in the control problems with delays 3 Zhenjie Ren PPDE Le Mans, 29/06/2016 7 / 21

  20. From PDE to PPDE ‘The’ unique well-defined solution Consider the first order nonlinear equation with the boundary conditions: −| Du ( x ) | = − 1 , x ∈ ( − 1 , 1) , u ( − 1) = u (1) = 1 Zhenjie Ren PPDE Le Mans, 29/06/2016 8 / 21

  21. From PDE to PPDE ‘The’ unique well-defined solution Consider the first order nonlinear equation with the boundary conditions: −| Du ( x ) | = − 1 , x ∈ ( − 1 , 1) , u ( − 1) = u (1) = 1 There is no smooth function, but infinite a.s. smooth functions satisfying this equation. Zhenjie Ren PPDE Le Mans, 29/06/2016 8 / 21

  22. From PDE to PPDE ‘The’ unique well-defined solution Consider the first order nonlinear equation with the boundary conditions: −| Du ( x ) | = − 1 , x ∈ ( − 1 , 1) , u ( − 1) = u (1) = 1 There is no smooth function, but infinite a.s. smooth functions satisfying this equation. Is there a criteria which can select a unique solution? Zhenjie Ren PPDE Le Mans, 29/06/2016 8 / 21

  23. From PDE to PPDE ‘The’ unique well-defined solution Consider the first order nonlinear equation with the boundary conditions: −| Du ( x ) | = − 1 , x ∈ ( − 1 , 1) , u ( − 1) = u (1) = 1 There is no smooth function, but infinite a.s. smooth functions satisfying this equation. Is there a criteria which can select a unique solution? Maximum Principle (Elliptic) max x ∈ O u ( x ) = max x ∈ ∂ O u ( x ), ∀ O ⊂ [ − 1 , 1] compact. Zhenjie Ren PPDE Le Mans, 29/06/2016 8 / 21

  24. From PDE to PPDE ‘The’ unique well-defined solution Consider the first order nonlinear equation with the boundary conditions: −| Du ( x ) | = − 1 , x ∈ ( − 1 , 1) , u ( − 1) = u (1) = 1 There is no smooth function, but infinite a.s. smooth functions satisfying this equation. Is there a criteria which can select a unique solution? Maximum Principle (Elliptic) max x ∈ O u ( x ) = max x ∈ ∂ O u ( x ), ∀ O ⊂ [ − 1 , 1] compact. Only one continuous solution fits the maximum principle: u ( x ) = | x | . Zhenjie Ren PPDE Le Mans, 29/06/2016 8 / 21

  25. From PDE to PPDE Why ‘the’ unique solution? Add a perturbation to the previous equation: −| Du ε ( x ) |− ε ∆ u ε = − 1 , x ∈ ( − 1 , 1) , u ε ( − 1) = u ε (1) = 1 Zhenjie Ren PPDE Le Mans, 29/06/2016 9 / 21

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend