vector boson production and decay in hadron collisions q
play

Vector boson production and decay in hadron collisions: q T - PowerPoint PPT Presentation

Vector boson production and decay in hadron collisions: q T resummation at NNLL accuracy Giancarlo Ferrera Milan University & INFN Milan In collaboration with: G. Bozzi, S. Catani, D. de Florian & M. Grazzini HP2.5 Florence


  1. Vector boson production and decay in hadron collisions: q T resummation at NNLL accuracy Giancarlo Ferrera Milan University & INFN Milan In collaboration with: G. Bozzi, S. Catani, D. de Florian & M. Grazzini HP2.5 – Florence – Sept. 5th 2014

  2. Motivations The Drell–Yan process [Drell,Yan(’70)] is a benchmark process in hadron collider physics. Its study is well motivated: Large production rates and clean experimental signatures. Constraints for fits of PDFs. q T spectrum: important for M W measurement and Beyond the Standard Model analyses. Test of perturbative QCD predictions. The above reasons and precise experimental data demands for accurate theoretical predictions ⇒ computation of higher-order QCD corrections. Giancarlo Ferrera – Universit` a & INFN Milano HP2.5 – Florence – 5/9/2014 Drell–Yan production and decay: q T resummation at NNLL accuracy 2/16

  3. Motivations The Drell–Yan process [Drell,Yan(’70)] is a benchmark process in hadron collider physics. Its study is well motivated: Large production rates and clean experimental signatures. Constraints for fits of PDFs. q T spectrum: important for M W measurement and Beyond the Standard Model analyses. Test of perturbative QCD predictions. The above reasons and precise experimental data demands for accurate theoretical predictions ⇒ computation of higher-order QCD corrections. Giancarlo Ferrera – Universit` a & INFN Milano HP2.5 – Florence – 5/9/2014 Drell–Yan production and decay: q T resummation at NNLL accuracy 2/16

  4. h 1 ( x 1 ,µ 2 F ) h 1 ( p 1 ) f a The Drell–Yan q T distribution / . . > ℓ 1 a ( x 1 p 1 ) V ( M ) ℓ 2 h 1 (p 1 ) + h 2 (p 2 ) → V(M) + X → ℓ 1 + ℓ 2 + X σ ˆ ab V = γ ∗ , Z 0 , W ± ℓ 1 ℓ 2 = ℓ + ℓ − , ℓν ℓ where and . . � b ( x 2 p 2 ) X . > . h 2 ( p 2 ) h 2 ( x 2 ,µ 2 pQCD factorization formula: f b F ) / � 1 � 1 � d σ F ) d ˆ σ ab h 1 ( x 1 , µ 2 h 2 ( x 2 , µ 2 s ; α S ,µ 2 R ,µ 2 ( q T , M , s )= dx 1 dx 2 f a F ) f b ( q T , M , ˆ F ) . / / dq 2 dq 2 0 0 T T a , b Standard fixed-order perturbative expansions ( Q T ≪ 1): � � � Q 2 c 12 log 2 M 2 + c 11 log M 2 d ˆ σ q ¯ T q dq 2 ∼ 1 + α S + c 10 T dq 2 Q 2 Q 2 0 T T T � � c 24 log 4 M 2 + · · · + c 21 log M 2 + α 2 + O ( α 3 + c 20 S ) S Q 2 Q 2 T T Fixed order calculation reliable only for q T ∼ M For q T → 0 , α n S log m ( M 2 / q 2 T ) ≫ 1: need for resummation of logarithmic corrections. Giancarlo Ferrera – Universit` a & INFN Milano HP2.5 – Florence – 5/9/2014 Drell–Yan production and decay: q T resummation at NNLL accuracy 3/16

  5. h 1 ( x 1 ,µ 2 F ) h 1 ( p 1 ) f a The Drell–Yan q T distribution / . . > ℓ 1 a ( x 1 p 1 ) V ( M ) ℓ 2 h 1 (p 1 ) + h 2 (p 2 ) → V(M) + X → ℓ 1 + ℓ 2 + X σ ˆ ab V = γ ∗ , Z 0 , W ± ℓ 1 ℓ 2 = ℓ + ℓ − , ℓν ℓ where and . . � b ( x 2 p 2 ) X . > . h 2 ( p 2 ) h 2 ( x 2 ,µ 2 pQCD factorization formula: f b F ) / � 1 � 1 � d σ F ) d ˆ σ ab h 1 ( x 1 , µ 2 h 2 ( x 2 , µ 2 s ; α S ,µ 2 R ,µ 2 ( q T , M , s )= dx 1 dx 2 f a F ) f b ( q T , M , ˆ F ) . / / dq 2 dq 2 0 0 T T a , b Standard fixed-order perturbative expansions ( Q T ≪ 1): � � � Q 2 c 12 log 2 M 2 + c 11 log M 2 d ˆ σ q ¯ T q dq 2 ∼ 1 + α S + c 10 T dq 2 Q 2 Q 2 0 T T T � � c 24 log 4 M 2 + · · · + c 21 log M 2 + α 2 + O ( α 3 + c 20 S ) S Q 2 Q 2 T T Fixed order calculation reliable only for q T ∼ M For q T → 0 , α n S log m ( M 2 / q 2 T ) ≫ 1: need for resummation of logarithmic corrections. Giancarlo Ferrera – Universit` a & INFN Milano HP2.5 – Florence – 5/9/2014 Drell–Yan production and decay: q T resummation at NNLL accuracy 3/16

  6. h 1 ( x 1 ,µ 2 F ) h 1 ( p 1 ) f a The Drell–Yan q T distribution / . . > ℓ 1 V ( M ) a ( x 1 p 1 ) ℓ 2 h 1 (p 1 ) + h 2 (p 2 ) → V(M) + X → ℓ 1 + ℓ 2 + X σ ˆ ab V = γ ∗ , Z 0 , W ± ℓ 1 ℓ 2 = ℓ + ℓ − , ℓν ℓ where and . . � b ( x 2 p 2 ) X . > . h 2 ( p 2 ) h 2 ( x 2 ,µ 2 pQCD factorization formula: f b F ) / � 1 � 1 � d σ F ) d ˆ σ ab h 1 ( x 1 , µ 2 h 2 ( x 2 , µ 2 s ; α S ,µ 2 R ,µ 2 ( q T , M , s )= dx 1 dx 2 f a F ) f b ( q T , M , ˆ F ) . / / dq 2 dq 2 T 0 0 T a , b Standard fixed-order perturbative expansions ( Q T ≪ 1): � Q 2 � � c 12 log 2 M 2 + c 11 log M 2 d ˆ σ q ¯ T q dq 2 ∼ 1 + α S + c 10 T dq 2 Q 2 Q 2 0 T T T � � c 24 log 4 M 2 + · · · + c 21 log M 2 + α 2 + O ( α 3 + c 20 S ) S Q 2 Q 2 T T Fixed order calculation reliable only for q T ∼ M For q T → 0 , α n S log m ( M 2 / q 2 T ) ≫ 1: need for resummation of logarithmic corrections. Giancarlo Ferrera – Universit` a & INFN Milano HP2.5 – Florence – 5/9/2014 Drell–Yan production and decay: q T resummation at NNLL accuracy 3/16

  7. Idea of (analytic) resummation Idea of large logs (Sudakov) resummation: reorganize the perturbative M 2 / q 2 expansion by all-order summation ( L = log( T )). α S L 2 α S L · · · · · · · · · O ( α S ) α 2 S L 4 α 2 S L 3 α 2 S L 2 α 2 O ( α 2 · · · S ) S L · · · · · · · · · · · · · · · · · · α n S L 2 n α n S L 2 n − 1 α n S L 2 n − 2 O ( α n · · · · · · S ) · · · · · · · · · · · · dominant logs next-to-dominant logs Ratio of two successive rows O ( α S L 2 ): fixed order expansion valid when α S L 2 ≪ 1. Ratio of two successive columns O (1 / L ): resummed expansion valid when 1 / L ≪ 1 i.e. when α S L 2 ∼ 1 (and α S ≪ 1). Giancarlo Ferrera – Universit` a & INFN Milano HP2.5 – Florence – 5/9/2014 Drell–Yan production and decay: q T resummation at NNLL accuracy 4/16

  8. Idea of (analytic) resummation Idea of large logs (Sudakov) resummation: reorganize the perturbative M 2 / q 2 expansion by all-order summation ( L = log( T )). α S L 2 α S L · · · · · · · · · O ( α S ) α 2 S L 4 α 2 S L 3 α 2 S L 2 α 2 O ( α 2 · · · S ) S L · · · · · · · · · · · · · · · · · · α n S L 2 n α n S L 2 n − 1 α n S L 2 n − 2 O ( α n · · · · · · S ) · · · · · · · · · · · · dominant logs next-to-dominant logs Ratio of two successive rows O ( α S L 2 ): fixed order expansion valid when α S L 2 ≪ 1. Ratio of two successive columns O (1 / L ): resummed expansion valid when 1 / L ≪ 1 i.e. when α S L 2 ∼ 1 (and α S ≪ 1). Giancarlo Ferrera – Universit` a & INFN Milano HP2.5 – Florence – 5/9/2014 Drell–Yan production and decay: q T resummation at NNLL accuracy 4/16

  9. Sudakov resummation is feasible when we have dynamics AND kinematics factorization ⇒ exponentiation. Dynamics factorization: general propriety of QCD matrix element for soft emissions based on colour coherence. It is the analogous of the independent multiple soft-photon emission is QED: n � dw n ( q 1 , . . . , q n ) ≃ 1 dw i ( q i ) n ! i =1 Kinematics factorization: not valid in general. For q T distribution of DY process it holds in the impact parameter space (Fourier transform). � � � n n n � � � d 2 q T exp( − i b · q T ) δ q T − q T j = exp( − i b · q T j ) = exp( − i b · q T j ) . j =1 j =1 j =1 Exponentiation holds in the impact parameter space. Results have then to be transformed back to the physical space. Resummed result can then be properly combined with the fixed order result ( matching ) to have a good control of both the kinematical regions: q T ≪ M and q T ∼ M . Giancarlo Ferrera – Universit` a & INFN Milano HP2.5 – Florence – 5/9/2014 Drell–Yan production and decay: q T resummation at NNLL accuracy 5/16

  10. Sudakov resummation is feasible when we have dynamics AND kinematics factorization ⇒ exponentiation. Dynamics factorization: general propriety of QCD matrix element for soft emissions based on colour coherence. It is the analogous of the independent multiple soft-photon emission is QED: n � dw n ( q 1 , . . . , q n ) ≃ 1 dw i ( q i ) n ! i =1 Kinematics factorization: not valid in general. For q T distribution of DY process it holds in the impact parameter space (Fourier transform). � � � n n n � � � d 2 q T exp( − i b · q T ) δ q T − q T j = exp( − i b · q T j ) = exp( − i b · q T j ) . j =1 j =1 j =1 Exponentiation holds in the impact parameter space. Results have then to be transformed back to the physical space. Resummed result can then be properly combined with the fixed order result ( matching ) to have a good control of both the kinematical regions: q T ≪ M and q T ∼ M . Giancarlo Ferrera – Universit` a & INFN Milano HP2.5 – Florence – 5/9/2014 Drell–Yan production and decay: q T resummation at NNLL accuracy 5/16

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend