vassiliev knot invariants derived from cable polynomials
play

Vassiliev knot invariants derived from cable -polynomials - PowerPoint PPT Presentation

Vassiliev knot invariants derived from cable -polynomials II 2019 12 20 Outline of my presentation The HOMFLYPT and Kauffman


  1. Vassiliev knot invariants derived from cable Γ -polynomials 滝岡 英雄 京都大学 日本学術振興会特別研究員 結び目の数理 II 日本大学 2019 年 12 月 20 日

  2. Outline of my presentation The HOMFLYPT and Kauffman polynomials P , F and their coefficient polynomials P 2 i , F i . We focus on P 0 (= F 0 = Γ) . ⇓ ( P 0 ) p/q is the ( p, q ) -cabling of P 0 for coprime integers p, q . ⇓ ( P 0 ) ( d ) p/q (1) is the d th derivative of ( P 0 ) p/q at t = 1 , which is a Vassiliev knot invariant of order ≤ d . ⇓ In particular, we will show some results about ( P 0 ) ( d ) n/ 1 (1) .

  3. HOMFLYPT ( P ) and Kauffman ( F ) polynomials P ( L ; t, z ) ∈ Z [ t ± 1 , z ± 1 ] and F ( L ; a, z ) ∈ Z [ a ± 1 , z ± 1 ] are invariants for oriented links in S 3 . For the trivial knot ⃝ , we have P ( ⃝ ) = F ( ⃝ ) = 1 . For a skein triple ( L + , L − , L 0 ) of oriented links, we have t − 1 P ( L + ) − tP ( L − ) = zP ( L 0 ) . For a skein quadruple ( D + , D − , D 0 , D ∞ ) of oriented link diagrams, we have aF ( D + ) + a − 1 F ( D − ) = z ( F ( D 0 ) + a − 2 ν F ( D ∞ )) , where 2 ν = w ( D + ) − w ( D ∞ ) − 1 and w ( D + ) , w ( D ∞ ) are the writhes of D + , D ∞ , respectively.

  4. Coefficient polynomials of P and F L : an oriented r -component link. P ( L ) = ( − t − 1 z ) − r +1 � � � P 2 i ( L ; t ) z 2 i , i ≥ 0 F ( L ) = ( az ) − r +1 � � � F i ( L ; a ) z i , i ≥ 0 where P 2 i ( L ; t ) ∈ Z [ t ± 1 ] and F i ( L ; a ) ∈ Z [ a ± 1 ] are called the 2 i th coefficient polynomial of P ( L ) and the i th coefficient polynomial of F ( L ) , respectively. Fact [Lickorish 1988] P 0 ( L ; t ) = F 0 ( L ; √− 1 t − 1 ) . P 0 ( L ; t ) is a Laurent polynomial in t − 2 . Putting t − 2 = x , we call it the Γ -polynomial Γ( L ; x ) ∈ Z [ x ± 1 ] , that is, Γ( L ; t − 2 ) = P 0 ( L ; t ) = F 0 ( L ; √− 1 t − 1 ) . In this talk, we use P 0 not Γ to apply Kanenobu’s results.

  5. Cable knot p ( > 0) , q : coprime integers. K : a knot. N ( K ) : a tubular neighborhood of K . K ( p,q ) : the ( p, q ) -cable knot of K , that is, an essential loop in ∂N ( K ) with [ K ( p,q ) ] = p [ l ] + q [ m ] in H 1 ( ∂N ( K ); Z ) , where ( m, l ) is a meridian-longitude pair of K with lk( K ∪ l ) = 0 and lk( K ∪ m ) = +1 . D : a diagram of K . w ( D ) : the writhe of D . K ( p,q ) has a diagram D ( p,q ) which consists of the p -parallel of D and the p -braid ( σ 1 · · · σ p − 1 ) q − pw ( D ) .

  6. Cabling for knot invariants I : a knot invariant. The map sending a knot K to the value I ( K ( p,q ) ) is also a knot invariant, which is called the ( p, q ) -cabling of I denoted by I p/q . In this talk, we focus on ( P 0 ) p/q .

  7. Singular knot invariant from a knot invariant A singular knot is an oriented immersed circle in S 3 whose singularities are only transverse double points. We assume that each double point on a singular knot is a rigid vertex. Let v be an invariant of an oriented knot in S 3 , which takes values in Q . Then v can be uniquely extended to a singular knot invariant by the Vassiliev skein relation: v ( K × ) = v ( K + ) − v ( K − ) , where K × is a singular knot with a double point × and K + , K − are singular knots obtained from K × by replacing × by a positive crossing and a negative crossing, respectively.

  8. Vassiliev knot invariants We call v a Vassiliev knot invariant of order d if there exists an integer d such that v ( K >d ) = 0 for any singular knot K >d with more than d double points and v ( K d ) ̸ = 0 for a singular knot K d with d double points. The set of all Vassiliev knot invariants of order ≤ d forms a vector space over Q , which is denoted by V d . There is a filtration V 0 ⊂ V 1 ⊂ V 2 ⊂ · · · ⊂ V d ⊂ · · · in the entire space of Vassiliev knot invariants. Each V d is finite-dimensional. In particular, we have V 0 = V 1 = < 1 > .

  9. Vassiliev knot invariants up to order six Fact [Kanenobu 2001] a 2 i : the 2 i th coefficient of the Alexander-Conway polynomial. P ( d ) 2 i (1) : the d th derivative of P 2 i at t = 1 . ( √− 1) : the d th derivative of F i at a = √− 1 . F ( d ) i V 2 = < 1 , a 2 > . V 3 = < 1 , a 2 , P (3) (1) > . 0 V 4 = < 1 , a 2 , P (3) 2 , a 4 , P (4) (1) , a 2 (1) > . 0 0 V 5 = < 1 , a 2 , P (3) 2 , a 4 , P (4) (1) , a 2 P (3) (1) , P (5) (1) , a 2 (1) , 0 0 0 0 ( √− 1) / √− 1 > . P (1) (1) , F (1) 4 4 V 6 = < 1 , a 2 , P (3) 2 , a 4 , P (4) (1) , a 2 P (3) (1) , P (5) (1) , a 2 (1) , 0 0 0 0 ( √− 1) / √− 1 , a 3 P (1) (1) , F (1) 2 , a 2 a 4 , a 2 P (4) (1) , P (3) (1) 2 , 4 4 0 0 ( √− 1) , F (1) ( √− 1) > . P (6) (1) , P (2) (1) , a 6 , F (2) 0 4 4 5

  10. Cabling for Vassiliev knot invariants Fact [Bar-Natan 1995, Stanford 1994] If v is a Vassiliev knot invariant of order d , then the ( p, q ) -cabling v p/q is also a Vassiliev knot invariant of order ≤ d . Since P ( d ) (1) is a Vassiliev knot invariant of order d , 0 ( P 0 ) ( d ) p/q (1) is a Vassiliev knot invariant of order ≤ d . In this talk, we consider ( P 0 ) ( d ) n/ 1 (1) for 1 ≤ d ≤ 6 and 1 ≤ n ≤ 7 .

  11. Results By using Kodama’s program “KNOT”, we can calculate ( P 0 ) n/ 1 ( K ) with 1 ≤ n ≤ 7 for a knot K with small crossings. Therefore, we obtain the following results. Order ≤ 2 V 2 = < 1 , a 2 > . P (2) (1) = − 8 a 2 0 ( P 0 ) (2) ( P 0 ) (2) 2 / 1 (1) = 4 P (2) 2 / 1 (1) = − 32 a 2 (1) 0 ( P 0 ) (2) ( P 0 ) (2) 3 / 1 (1) = 9 P (2) 3 / 1 (1) = − 72 a 2 (1) 0 ( P 0 ) (2) ( P 0 ) (2) 4 / 1 (1) = 16 P (2) 4 / 1 (1) = − 128 a 2 (1) 0 ( P 0 ) (2) ( P 0 ) (2) 5 / 1 (1) = 25 P (2) 5 / 1 (1) = − 200 a 2 (1) 0 ( P 0 ) (2) ( P 0 ) (2) 6 / 1 (1) = 36 P (2) 6 / 1 (1) = − 288 a 2 (1) 0 ( P 0 ) (2) ( P 0 ) (2) 7 / 1 (1) = 49 P (2) 7 / 1 (1) = − 392 a 2 (1) 0

  12. Proposition ( P 0 ) (2) n/ 1 (1) = n 2 P (2) (1) for any n ( ≥ 1) . 0 Proof. Let ∆ K ( t ) be the normalized Alexander polynomial of a knot K , which satisfies ∆ K ( t ) = ∇ K ( t 1 / 2 − t − 1 / 2 ) . Then we have ∆ (1) K (1) = 0 and ∆ (2) K (1) = 2 a 2 ( K ) . By using satellite formula, we have ∆ K ( n, 1) ( t ) = ∆ K ( t n ) . Therefore, we have � a 2 ( K ( n, 1) ) = (1 / 2)∆ (2) K ( n, 1) (1) = (1 / 2)∆ (2) K ( t n ) � � t =1 K ( t n ) t 2 n − 2 + n ( n − 1)∆ (1) � = (1 / 2)( n 2 ∆ (2) K ( t n ) t n − 2 ) � � t =1 = n 2 a 2 ( K ) . By P (2) ( K ; 1) = − 8 a 2 ( K ) , we have 0 ( P 0 ) (2) n/ 1 ( K ; 1) = P (2) ( K ( n, 1) ; 1) = n 2 P (2) ( K ; 1) . 0 0 □

  13. V 3 = < 1 , a 2 , P (3) (1) > . P (2) Order ≤ 3 (1) = − 8 a 2 . 0 0 ( P 0 ) (3) 2 / 1 (1) = − 48 a 2 + 4 P (3) ( P 0 ) (3) 2 / 1 (1) = 6 P (2) (1) + 4 P (3) (1) (1) 0 0 0 ( P 0 ) (3) 3 / 1 (1) = − 192 a 2 + 9 P (3) ( P 0 ) (3) 3 / 1 (1) = 24 P (2) (1) + 9 P (3) (1) (1) 0 0 0 ( P 0 ) (3) 4 / 1 (1) = − 480 a 2 + 16 P (3) ( P 0 ) (3) 4 / 1 (1) = 60 P (2) (1) + 16 P (3) (1) (1) 0 0 0 ( P 0 ) (3) 5 / 1 (1) = − 960 a 2 + 25 P (3) ( P 0 ) (3) 5 / 1 (1) = 120 P (2) (1) + 25 P (3) (1) (1) 0 0 0 ( P 0 ) (3) 6 / 1 (1) = − 1680 a 2 + 36 P (3) ( P 0 ) (3) 6 / 1 (1) = 210 P (2) (1) + 36 P (3) (1) (1) 0 0 0 ( P 0 ) (3) 7 / 1 (1) = − 2688 a 2 + 49 P (3) ( P 0 ) (3) 7 / 1 (1) = 336 P (2) (1) + 49 P (3) (1) (1) 0 0 0 Question ( P 0 ) (3) n/ 1 (1) = ( n − 1) n ( n + 1) P (2) (1) + n 2 P (3) (1)? 0 0

  14. Order ≤ 4 V 4 = < 1 , a 2 , P (3) 2 , a 4 , P (4) (1) > . P (2) (1) , a 2 (1) = − 8 a 2 . 0 0 0 ( P 0 ) (4) 2 / 1 (1) = − 96 a 2 + 8 P (3) 2 − 768 a 4 + 4 P (4) (1) + 1920 a 2 (1) 0 0 ( P 0 ) (4) 3 / 1 (1) = − 768 a 2 + 32 P (3) (1) + 11520 a 2 2 − 4608 a 4 + 9 P (4) (1) 0 0 ( P 0 ) (4) 4 / 1 (1) = − 2880 a 2 + 80 P (3) 2 − 15360 a 4 + 16 P (4) (1) + 38400 a 2 (1) 0 0 ( P 0 ) (4) 5 / 1 (1) = − 7680 a 2 + 160 P (3) (1) + 96000 a 2 2 − 38400 a 4 + 25 P (4) (1) 0 0 ( P 0 ) (4) 6 / 1 (1) = − 16800 a 2 + 280 P (3) 2 − 80640 a 4 + 36 P (4) (1) + 201600 a 2 (1) 0 0 ( P 0 ) (4) 2 / 1 (1) = 12 P (2) (1) + 8 P (3) (1) + 30 P (2) (1) 2 − 768 a 4 + 4 P (4) (1) 0 0 0 0 ( P 0 ) (4) 3 / 1 (1) = 96 P (2) (1) + 32 P (3) (1) + 180 P (2) (1) 2 − 4608 a 4 + 9 P (4) (1) 0 0 0 0 ( P 0 ) (4) 4 / 1 (1) = 360 P (2) (1) + 80 P (3) (1) + 600 P (2) (1) 2 − 15360 a 4 + 16 P (4) (1) 0 0 0 0 ( P 0 ) (4) 5 / 1 (1) = 960 P (2) (1) + 160 P (3) (1) + 1500 P (2) (1) 2 − 38400 a 4 + 25 P (4) (1) 0 0 0 0 ( P 0 ) (4) 6 / 1 (1) = 2100 P (2) (1) + 280 P (3) (1) + 3150 P (2) (1) 2 − 80640 a 4 + 36 P (4) (1) 0 0 0 0 Question ( P 0 ) (4) n/ 1 (1) = 2( n − 1) 2 n ( n + 1) P (2) (1) 0 + (4 / 3)( n − 1) n ( n + 1) P (3) (1) + (5 / 2)( n − 1) n 2 ( n + 1) P (2) (1) 2 0 0 − 64( n − 1) n 2 ( n + 1) a 4 + n 2 P (4) (1)? 0

  15. We have the following relations: a 4 = (1 / 768)(12 P (2) (1) + 8 P (3) (1) + 30 P (2) (1) 2 0 0 0 + 4 P (4) (1) − ( P 0 ) (4) 2 / 1 (1)) 0 = (1 / 4608)(96 P (2) (1) + 32 P (3) (1) + 180 P (2) (1) 2 0 0 0 + 9 P (4) (1) − ( P 0 ) (4) 3 / 1 (1)) 0 = (1 / 15360)(360 P (2) (1) + 80 P (3) (1) + 600 P (2) (1) 2 0 0 0 + 16 P (4) (1) − ( P 0 ) (4) 4 / 1 (1)) 0 = (1 / 38400)(960 P (2) (1) + 160 P (3) (1) + 1500 P (2) (1) 2 0 0 0 + 25 P (4) (1) − ( P 0 ) (4) 5 / 1 (1)) 0 = (1 / 80640)(2100 P (2) (1) + 280 P (3) (1) + 3150 P (2) (1) 2 0 0 0 + 36 P (4) (1) − ( P 0 ) (4) 6 / 1 (1)) . 0 Therefore, we see that V 4 = < 1 , P (2) (1) , P (3) (1) , P (2) (1) 2 , P (4) (1) , ( P 0 ) (4) n/ 1 (1) > 0 0 0 0 for 2 ≤ n ≤ 6 .

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend