variational laplace autoencoders
play

Variational Laplace Autoencoders Yookoon Park, Chris Dongjoo Kim and - PowerPoint PPT Presentation

Variational Laplace Autoencoders Yookoon Park, Chris Dongjoo Kim and Gunhee Kim Vision and Learning Lab Seoul National University, South Korea Introduction - Variational Autoencoders - Two Challenges of Amortized Variational Inference -


  1. Variational Laplace Autoencoders Yookoon Park, Chris Dongjoo Kim and Gunhee Kim Vision and Learning Lab Seoul National University, South Korea

  2. Introduction - Variational Autoencoders - Two Challenges of Amortized Variational Inference - Contributions

  3. Variational Autoencoders (VAEs) ā€¢ Generative network šœ„ š‘ž # š² š“ = š’Ŗ(š’‰ # š“ , šœ , š‰) , š‘ž š“ = š’Ŗ(šŸ, š‰) ā€¢ Inference network šœš : amortized inference of š‘ž # š“ š² , (š²) ) š‘Ÿ 2 š“ š² = š’Ŗ(š‚ 2 š² , diag š‰ 2 ā€¢ Networks jointly trained by maximizing the Evidence Lower Bound (ELBO) ā„’ š² = š”½ ; log š‘ž # š², š“ āˆ’ log š‘Ÿ 2 š“ š² = log š‘ž # š² āˆ’ šø @A (š‘Ÿ 2 š“ š² āˆ„ š‘ž # š“ š² ) ā‰¤ log š‘ž # (š²) Kingma, D. P. and Welling, M. Auto-encoding variational bayes. In ICLR , 2014. Rezende, D. J., Mohamed, S., and Wierstra, D. Stochastic backpropagation and approximate inference in deep generative models. In ICML , 2014

  4. Two Challenges of Amortized Variational Inference 1. Enhancing the expressiveness of š‘Ÿ 2 š“ š² ā€¢ The full-factorized assumption is restrictive to capture complex posteriors ā€¢ E.g. normalizing flows (Rezende & Mohamed, 2015; Kingma et al., 2016) 2. Reducing the amortization error of š‘Ÿ 2 š“ š² ā€¢ The error due to the inaccuracy of the inference network ā€¢ E.g. gradient-based refinements of š‘Ÿ 2 š“ š² (Kim et al, 2018; Marino et al., 2018; Krishnan et al. 2018) Rezende, D. J. and Mohamed, S. Variational inference with normalizing flows. In ICML , 2015. Kingma, D. P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., and Welling, M. Improved variational inference with inverse autoregressive flow. In NeurIPS , 2016. Kim, Y., Wiseman, S., Millter, A. C., Sontag, D., and Rush, A. M. Semi-amortized variational autoencoders. In ICML , 2018. Marino, J., Yisong, Y., and Mandt, S. Iterative amortized inference. In ICML , 2018. Krishnan, R. G., Liang, D., and Hoffman, M. D. On the challenges of learning with inference networks on sparse high-dimensional data. In AISTAT , 2018.

  5. Contributions ā€¢ The Laplace approximation of the posterior to improve the training of latent deep generative models with: 1. Enhanced expressiveness of full-covariance Gaussian posterior 2. Reduced amortization error due to direct covariance computation from the generative network behavior ā€¢ A novel posterior inference exploiting local linearity of ReLU networks

  6. Approach - Posterior Inference using Local Linear Approximations - Generalization: Variational Laplace Autoencoders

  7. Observation 1: Probabilistic PCA ā€¢ A linear Gaussian model (Tipping & Bishop, 1999) š‘ž(š“) = š’Ŗ šŸ, š‰ š‘ž # š² š“ = š’Ŗ(š—š“ + šœ, šœ , š‰) ā€¢ The posterior distribution is exactly 1 šœ , šš»š— š” š² āˆ’ šœ , šš» š‘ž # š“ š² = š’Ŗ NO 1 šœ , š— š” š— + š‰ where šš» = Toy example . 1-dim pPCA on 2-dim data Tipping, M. E. and Bishop, C. M. Probabilistic Principal Component Analysis. J. R. Statist. Soc. B , 61(3):611ā€“622, 1999.

  8. Observation 2: Piece-wise Linear ReLU Networks ā€¢ ReLU networks are piece-wise linear (Pascanu et al., 2014; Montufar et al., 2014) š’‰ # š“ ā‰ˆ š— š“ š“ + šœ š“ ā€¢ Locally equivalent to probabilistic PCA š‘ž # š² š“ ā‰ˆ š’Ŗ(š— š“ š“ + šœ š“ , šœ , š‰) Toy example . 1-dim ReLUVAE on 2-dim data Pascanu, R., Montufar, G., and Bengio, Y. On the number of response regions of deep feedforward networks with piecewise linear activations. In ICLR , 2014. Montufar, G., Pascanu, R., Cho, K., and Bengio, Y. On the number of linear regions of deep neural networks. In NeurIPS , 2014.

  9. Posterior Inference using Local Linear Approximations Linear models give exact ReLU networks are posterior distribution locally linear Observation 2 Observation 1 Posterior approximation based on the local linearity

  10. Posterior Inference using Local Linear Approximations 1. Iteratively find the posterior mode š‚ where the density is concentrated ā€¢ Solve under the linear assumption š’‰ # š‚ š’– ā‰ˆ š— š’– š‚ R + šœ š’– NO š‚ RSO = 1 1 š” š² āˆ’ šœ š” š— R + š‰ šœ , š— R š— R šœ , ā€¢ Repeat for T steps 2. Posterior approximation using š‘ž # š² š“ ā‰ˆ š’Ŗ(š— š‚ š“ + šœ š‚ , šœ , š‰) NO 1 š” š— š‚ + š‰ š‘Ÿ š“ š² = š’Ŗ š‚, šš» , where šš» = šœ , š— š‚

  11. Generalization: Variational Laplace Autoencoders 1. Find the posterior mode s.t. āˆ‡ š“ log š‘ž š², š“ | š“Vš‚ = 0 ā€¢ Initialize š‚ X using the inference network ā€¢ Iteratively refine š‚ R (e.g. use gradient-descent) 2. The Laplace approximation defines the posterior as: š‘Ÿ š“ š² = š’Ŗ š‚, šš» , where šš» NšŸ = šš³ = āˆ’āˆ‡ š“ , log š‘ž š², š“ | š“Vš‚ 3. Evaluate the ELBO using š‘Ÿ š“ š² and train the model

  12. Results - Posterior Covariance - Log-likelihood Results

  13. Experiments ā€¢ Image datasets: MNIST, OMNIGLOT, Fashion MNIST, SVHN, CIFAR10 ā€¢ Baselines ā€¢ VAE ā€¢ Semi-Amortized (SA) VAE (Kim et al, 2018) ā€¢ VAE + Householder Flows (HF) (Tomczak & Welling, 2016) ā€¢ Variational Laplace Autoencoder (VLAE) ā€¢ T=1, 2, 4, 8 (number of iterative updates or flows)

  14. Posterior Covariance Matrices

  15. Log-likelihood Results on CIFAR10 2390 2370 2350 VAE SA-VAE VAE+HF VLAE T=1 T=2 T=3 T=4

  16. Thank you Visit our poster session at Pacific Ballroom #2 Code available at : https://github.com/yookoon/VLAE

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend