valeri p frolov univ of alberta edmonton
play

Valeri P. Frolov, Univ. of Alberta, Edmonton GC2018, Yukawa - PowerPoint PPT Presentation

Valeri P. Frolov, Univ. of Alberta, Edmonton GC2018, Yukawa Institute, Kyoto, February 16, 2018 Based on: " Principal Killing strings in higher-dimensional Kerr-NUT-(A)dS spacetimes", Jens Boos and V.F, e-Print: arXiv:1801.00122


  1. Valeri P. Frolov, Univ. of Alberta, Edmonton GC2018, Yukawa Institute, Kyoto, February 16, 2018

  2. Based on: " Principal Killing strings in higher-dimensional Kerr-NUT-(A)dS spacetimes", Jens Boos and V.F, e-Print: arXiv:1801.00122 (2018); "Stationary black holes with st ringy hair", Jens Boos and V.F., e-Print: arXiv:1711.06357 (2017), (to appear in PRD); "Stationary strings and branes in the higher- dimensional Kerr-NUT-(A)dS spacetimes", David Kubiznak and V.F., JHEP 0802 (2008) 007; e-Print: arXiv:0711.2300.

  3. "Black holes, hidden symmetries, and complete integrability", V.F., Pavel Krtous and David Kubiznak, Living Rev.Rel. 20 (2017) no.1, 6; e-Print: arXiv:1705.05482.

  4. Solving stationary string equations in the Kerr-NUT-(A)dS background

  5. Killing-Yano object s Conformal KY tensor (CKY) of rank in dims: p D 1 1            X ( ) X ( ) 0 ,    X p 1 D p 1     Killing tensor (KYT): 0;      Closed conformal KY tensor (C CKY) : d 0 . 1 1             ( ) X ( ) X ( ),    X p 1 D p 1 * *   p D p *

  6. Properties: •  (KYT)=CCKY •  (CCKY)=KYT •  CCKY CCKY=CCKY

  7. Principal ten so r = non-deg enera te rank 2 CCKY tenso r    D 2 n 1           b h g g h  c ab ca b cb c a ba D 1  n 1         h r l l x e ˆ e      1  n 1              0 0 g l l l l ( e e ) ˆ ˆ ˆ ˆ e e e e       1                0 0 ( l l ) 1 ( e e ) ( ) ( ) 1 ˆ ˆ ˆ ˆ e e e e         0 Darboux basis: ( l l e ). ˆ ˆ e e   Non-degenerate: There are exactly non-vanishing n "eigenvalues" ( r x  , ) that are functi onally independent in some domain. In this domain none f o the gradients of them is a null vector.

  8. A metric which admits a principal tensor is off-shell Kerr-NUT-(A)dS metric. It contains arbitr n ary functi ons of 1 var iable.  On-shell: Einstein equations are satisf ied Kerr- NUT-(A)dS so lution.

  9. •    is a primary Killing vector: L g L h 0;   •    ( ) j j 1 h h is a CCKY 2 j form;  j •  ( ) j ( ) j f h is a KY (D-2j) form  •  ( ) j bc c ab ( ) j a   k 1 f f is a rank 2 Killing tensor; 1 D 2 j 1     ( ) j c c ( D 2 j 1)   1 D 2 j 1 •            k , ( j 0 … n 1 m ) are commuting ( ) j ( ) j (secondary) Killing vectors; •  k g ; (0) •      Frobenius theorem: = , ;   ( ) j j •   ( , r x , , ) are canonical coordinates;  j • are principal null d l irections; their integral lines  are geodesics.

  10. Geodesic equations are completely integrable: There exist integrals of motion for a free particle, D    ( n ) first ord er p and second n or der p k p . ( ) j ( ) j Q: If instead of a particle one has a string: Are Nambu-Goto string equations completely integrable in the Kerr-NUT-( A)dS geometr y? A: In a general case - No. If a string is stat ionary - Yes.

  11. Stationary strings in Kerr-NUT-(A)dS    i Killing vector , coordin ates - ( , t y ) t          2 a b i g p , F , A ,   ab ab i 2 2      2 i 2 i j ds F dt ( Ady ) p d d y y i ij Nambu-Goto action for a string   i j dy dy         I tE E Fdl d F p .   ij d d    i String configuration ( ) is a geodesic in ( y D 1)  dimensional space with metric p Fp . ij ij

  12. If metric g admits the principal tensor it has ab   n Killing vectors and rank 2 Killing tensors. n    This gives D 2 n integrals of motion for a free parti cle. The reduced ref-shifted metric p does not admit ij  a principal tensor, However, when is a primary    Killing vector, it has n 1 Killing vectors and n     rank 2 Killing tensors. This gives D 2 n 1 integrals of motion. Thus, the stationary string equa t io ns a re compl etely integrable . [ V .F . an d David Kubiznak (20 08)]

  13. Principal Killing Strings   l is a tangent vector to a principal   null geodesic in the affine parametrization:     0, [ , ] 0.    Frobenius theorem implies that a ST is foliated   a A i by 2-D (Killing) s urfaces . Coordinates Y ( z , y ).   i Equations of a given are y const .     A z ( v ) are coordinates on , such that           v 

  14. The Killing surface in the off -shell Kerr -NUT -(A)dS metric is minimal.         2 A B 2 2 Induced 2-D metric: d d z d z d 2 d v d .   AB  n are (D-2) m utually orthogonal unit vectors normal ( i )  to . The extrin s c i curvature is:        a c b a b g n Y Y , g n Z 0.   ( ) i AB ab ( ) i A c B ( ) i ab ( ) i                b AB c b a b a b 2 a b Z Y Y .         A c B  a a a          b a b b a b Z 2 F .     a a 1       a b a a 2 F , ( )       b a 2

  15. Incoming principal Killing string:         ( ) j r , P ( ) r x const,  j n    2( n 1 j ) r dr   ( ) j P n X r ( ) n           ˆ ( r x ) ( v r x )   k k  2( n 1) m r        ˆ d d v a d d r j j X  j 1 n 1         1 2( n 1 j ) ˆ d a d r d r j j j X n String equation in the null incoming coordinates        0 0 ˆ ˆ const x x const.   j j

  16. String's stress-energy tensor in in-coming coordinates          ab ( a b ) 2 a b s T 2 q      g        ˆ ˆ 0 0 q q x ( x )   j j  n 1 m          ˆ ˆ 0 0 ( x x ) ( )   j j    1 j 1

  17. Applications to Myers-Perry ST  D 3        a b 16 M d S  D 2 ab B        a b 16 J d S ( ) i ( ) i ab B 2  J Ma .  i ( ) i D 2           a b a b E T d , J T d b a i b i a   D 1 D 1 H H   2  0      J M 0 a s i i ( ) i 2 M 1    0 J J exp( v v / ), v .    ( ) i ( ) i i i 0 2 D 2 ( ) s i

  18.  J Projection( ) τ   ˆ ˆ i i e and are unit vectors along and ; e x y and are dual unit i i i i m m 2 Ma           ˆ δ i i 0 0 i forms. J ; x 0 a e ,  i i i i D 2   i 1 i 1  m          ˆ ˆ 0 0 0 s F [ x e y e (1 ) z e ]    i i i i  z r  i 1 m m                     ˆ τ δ 0 0 i j 0 0 0 i 0 F [ a a 0 (1 ) z ] s i i i i i    i j 1 i 1

  19. n   n 1 2 string segments 2 "infinite captured strings"

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend