university
play

University of Some enumeration formulas : lay |YsYdYIYhY Thm - PowerPoint PPT Presentation

Applications of geometric techniques Coxeter combinator Catalan in ics . Theo Douvropoulos Thesis Defense Minnesota University of Some enumeration formulas : lay |YsYdYIYhY Thm I Hurwitz , . , ( 23 ) ( l 3) ( 123J = - #


  1. Applications of geometric techniques Coxeter combinator Catalan in ics . Theo Douvropoulos Thesis Defense Minnesota University of

  2. Some enumeration formulas : lay • |YsYdYIYhY Thm I Hurwitz , . , ( 23 ) ( l 3) ( 123J = - # { of | Redd shortest transpositions } factorization - cycle c) I " " of := s an n " = . .tn ti wl ti . . , . n ) ( 123 . . . - generated Now coxeter element irreducible given , well in a an c , complex reflection W with ord =h of (c) group ranrn : , Thm [ Bess is 2006-2016 ] n ¥ T . .tn } # { shortest I Redwccsl reflection factorization c=ti := = ,

  3. c=w win Some # a enumeration formulas : Thm[ 2016 ] intersection Given D flat # Z . an . , NWCH # { shortest I Factwttt factorization Z } trite l= dim Z . := , , wit reflections & the . orbit of W ; heh [ :Wz ] L ]=>[ W=An ¥4 - I [ Basis nm ) Hurwitz : : ( h=n )

  4. " mnultiplicity The simplest way to of prove [ Hurwitz and ] Cagley perhaps to count the is these the quasi . homogeneous of . Looijengoc map Lyashro - V. 1. Arnot 'd . X-ray a polynomial map of :E→ E p : theorems al - @ of @ Ei¥IEnt÷F*i⇐E7 @ " around " monodromy ( 134 ) ( 4 D : . ( 134 ) ( z } ) ( 1234 ) " monodromy = " around ( 11 ( 23 ) (4) : D

  5. Is there construction ? inverse an Riemann 's Theorem Existence : # { ( lengthy polynomial { { ... ,w . } Ee Ese . } p maps : w .my#aEoHtnWitItIeID } , , p¥oY¥I :* critical ( values p - before ) , monodromy as of P # So Polynomials degree of with |Redq( of I c) = n , , fixed - I distinct critical values n , .

  6. : The Deft . Looijenga sends Lyashro CLL ) morphism a polynomial E Blyn Zhtazznt to its p = not an + multi set values { www.wr ] of critical . = # ( where critical multcwil ) pts ( counted multiplicity of with zj ) . th pczjkwi s . I Redqcdl Riemann 's Theorem Existence of fiber size generic ⇒ = of LL

  7. Presentation Coordinate for LL Target Domain Multiset critical values of p= Etaizmtooiancpolyn { wbuoswn . , } p r ✓ . ( 012,013 an ) " " EE polynomial + WD ( t ( ttwn . , ) n ; . , . . tmtb tmtu but = . o , q . ;bn ( b , , ) em E . , . . ;Wn bi=C . D i. ; ( where w Ci e. , , . polynomial ) ( ith elementary the Is symm

  8. Geometry the LL of map LL > ( b , ( ED as , CED ) an ) ( , bn : Ohio := ; - on . , AL LL ' en . : , Properties ÷ L ° polynomial is a map - homogeneous b) LL weights with is quasi : " ;h) . ;bn & - Dn ) ( Qzu an ) ( 2,3 , ( b . , )< ( n ,2n , , Cn ← → , ; - u on , c) finite LL morphism is a

  9. Geometry the LL of map b) Domain : Consider the scalar action Pdyn : on ftp.T.p ) HEE coordinates : y*P=Yu( in ton ) zntazzn 't . - = 42-5+047242-52 + and " Too . set zifz ' jn2+ : + aid ' " =( zgn @ and + ... " ) . ;an)=( i. * ( ago aid ?o Y ; and C. : .

  10. Geometry the LL of map Target b) : . . . The critical values of y*p⇒?p : { w , ; ;wr]→{ ; Now . } How , ;o . In coordinates : . ;D "wr ) biG*p=CiC PW , ; . C :C www.wrj-yni.bi Mi =L . " bn , )=4" boo ;D h*Cb , ;o;bn ' . , ) So " . , #

  11. Geometry the LL of map a) Polynomial ity : critical value is has W if pets a w - double root That w ) Discz ( pots =O if is a - . , root Disczcpczs - t ) of is ⇒ W a " has ' (8) ( only c) ' critical Finiteness =5 all L[ z < : > = values equal to 0 ) Bezout 's thm Consequence via : descutwwttkw.tk#aInnnjEnneFfI=nni

  12. Basics reflection of complex groups VIE " Wr ' . generated , complex pTKµ Wis well a µ##y reflection acting Vic " group on if W=< two GLCVI ;tn>< with Gkvtstiafl ,g ] ¥ E ( x , . ) µ ,× := ... ... t " pseudo . reflection ) y=| Ctiisa . ifncx 'D (W\YIen ( ficx 't . µ > V Wr Wr E[ v ] > ⇒ via w*f:=fCw .v ) ' ' _\ art :={ :¥tf¥w } fears :=e(oµ ,

  13. Basics reflection of complex groups " V±E Wr . Todd ' µ . Chevalley pIxµ Shephard : E[V]W=E[f #x## . ;fn] , ; fundamentatnvariants ' ' " di :=degCfis We write I :=C×s :×n ) and order them µ d. Edztoootdn " t For Wweltgen 'd ,h:=dn is ( ficx 't (W\v)Ien 'D ;fat . . number the Gxeter . Significance : Implies that the fibers the =\ of map / > CFCXJ . ;fnCx→j ) ;Xnk p :C × ; - . , It :=e( UHI - orbits > precisely the W are .

  14. Basics reflection of complex groups VIE " Wr > Eff PTKH Steinberg 's Theorem : 's covering map . # HPCWKSBCWK |p f >W→1 .ae?tri.snIYIdio:tohe@@y FX.it#I:EtsvfeeYwoiIFImtT(8).vXs:=Cx......xnj niviires ) n.ciimvreg.it ,( ( f. C Eb ( wwten enytj 'D ;fat . . Huili a covering p , which is map explicitly the fits given via =p(uµ , .

  15. their geometric Coxeter elements and factorization µ÷Y/ ' Bessis Saito theorem " VIE W 's pIxµ : Wiswell . yen 'dc FCF ; ogfn ) fFj¥ c. ✓ sth mv ⇒ .it?IoeniEtnt_# . ;fn Qicccfso , ] . ) eanon.IE?aYfftI..+an.Xs:=CX.,o...xn |p picrvevressth Now f , "=fniH=O fat f. as =/ . ( f. ( I 's Wwtren x-D ;fc , ( . . eknilhtt path , BCH too : ,D . ✓ := "fIY " at S :=p( BHDEBCWI / isthecoxeter (5) element c It :=p( :# UH )

  16. their geometric Coxeter elements and factorization a path O :O '→y ' Pick Y in ¥ . xp \ ¥ Lift to path Do WW . in a " that above " stays " It . MAIL.tn#tEfyI bcy.x.jo?eobiub5o#*l :¥F¥a¥I¥÷¥xi¥ ✓ Define . ×#}" BEFIT "a :* , ,

  17. their geometric Coxeter elements and factorization " reduced ¥ define We the - ×*\ maprlbl " label : - . LyµLo→\µ Pt#sh#lfI§fI¥±I÷÷⇐¥±¥ bcy.x.j.i.by/.fPoSyoooaS Cioo .Cw=( So ) lrlblis t.FI#Eeaseianm well-defined !

  18. - Looijenga ( LL ) morphism The Lyashro We define the LL : map > { LL :* : :[ Y in : - . *fftEs#¥h÷fynieimi cenotfernedpoinonsfipnurngtionsf multi set nft ↳ > y - T.tl#/yHfiifntrftn+aIFEI+a.w=d a ⇐ - ÷ ¥ . ;fn ( y ) ) ( f , , > ( Oh ( y ) , ) - y= an . oo . , , It :L by is given eqn fnntazfn ' " ' an=0 Too + ° E [ fbooo E , ] , fn Oli .

  19. ✓ (y= Properties LL and rlbl of the maps : line to The It transverse Ly ally is for . . The in m orphism finite LL is - map a . :c If " :t÷¥ae¥Ii÷¥÷¥a¥ *f#itg€lfEEfa only ) ) ) # ¥Y×¥/t# . ;fn ( f , , > ( , ) , ( y ) a o ; . . § , LL rlbl compatible and . are : - Llc g) ={ . ;Xr } Maltais with ni x , ; := It :L rlbl (g) by and ( Goo Cr ) is given eqn = ; , fnntazfnn ' then lrccitni an=0 too + . . E E [ fbooo , ] , fn Oli .

  20. is ] The [ trivialization theorem Bess . * III @ Estimated :n . Methylene Redwcdl inaction . ¥ ## Lyf//Lojµ the numerological ! ! Depends on : degCL4= coincidence 1

  21. Factorization tire s Egg w " Eitan III. :# ⇒ Y theater l*¥1i¥⇒ =±,aPnmi µ ( f , ;o;fn . i. F) , #

  22. Factorization Primitive s lift We to the LL flat Z can map : any # ↳ multi set Aft ZFCZ : E ;;ZA= , , decorated at FNCEI In coordinates : bra 'D } ) roots of , { [ LTCEK ( fnce 's 's ]nr[E+b that t.f.cz # . + oo , L linear t or : relation # ( b. ( E 's , CE 's ) 1 Zi ;Zr ) ; br . . , ET . ocrhs =hmr!=hdim?( dimzs ! , degLT= So , deglbd =h 2h . . counted factorization [ Nwczs :Wz] We have by over .hn#dimzI . , Factwczjl So [ NWCZS : Wz ]

  23. Towards the Trivialization Theorem proof of uniform a Picr configuration e={ := Maltais multiplicities ;Xr ] wl x ni a . . , , LL ) =L Compare : ' (6) t.mu/tycaCLL ) ← ' Arlbl I L[ (e) ' ; C k ) ( a 6 = . . , compatible with e and : K I Redwccisl I Redwcdl It - 1 " = ←¥,⇐ , , compatible with e

  24. Thank ! you

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend