univariate smoothing overview problem definition
play

Univariate Smoothing Overview Problem Definition & Interpolation - PowerPoint PPT Presentation

Univariate Smoothing Overview Problem Definition & Interpolation Problem definition Smoothing Problem: Given a data set with a single input variable x , find the best function g ( x ) that minimizes the Interpolation prediction


  1. Univariate Smoothing Overview Problem Definition & Interpolation • Problem definition • Smoothing Problem: Given a data set with a single input variable x , find the best function ˆ g ( x ) that minimizes the • Interpolation prediction error on new inputs (probably not in the data set) • Polynomial smoothing • Interpolation Problem: Same as the smoothing problem except • Cubic splines the model is subject to the constraint ˆ g ( x i ) = y i for every • Basis splines input-output pair ( x i , y i ) in the data set • Smoothing splines – Linear Interpolation : Use a line between each pair of points • Bayes’ rule – Nearest Neighbor Interpolation : Find the nearest input in the data set and use the corresponding output as an • Density estimation approximate fit • Kernel smoothing – Polynomial Interpolation : Fit a polynomial of order n − 1 to • Local averaging g ( x ) = � n i =1 w i x i − 1 input output data: ˆ • Weighted least squares – Cubic Spline Interpolation : Fit a cubic polynomial with • Local linear models continuous second derivatives in between each pair of points (more on this later) • Prediction error estimates J. McNames Portland State University ECE 4/557 Univariate Smoothing Ver. 1.25 1 J. McNames Portland State University ECE 4/557 Univariate Smoothing Ver. 1.25 2 Interpolation versus Extrapolation Example 1: Linear Interpolation • Interpolation is technically defined only for inputs that are within Chirp Linear Interpolation 2 the range of the data set min i x i ≤ x ≤ max i x i • If an input is outside of this range, the model is said to be 1.5 extrapolating 1 • A good model should do reasonable things for both cases 0.5 • Extrapolation is much a harder problem Output y 0 −0.5 −1 −1.5 −2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Input x J. McNames Portland State University ECE 4/557 Univariate Smoothing Ver. 1.25 3 J. McNames Portland State University ECE 4/557 Univariate Smoothing Ver. 1.25 4

  2. Example 1: MATLAB Code % ================================================ % Nearest Neighbor Interpolation % ================================================ figure; %function [] = Interpolation (); FigureSet (1,’LTX ’); yh = interp1(x,y,xt ,’nearest ’); close all; h = plot(xt ,yh ,’b’,x,y,’r.’); set(h,’MarkerSize ’ ,8); N = 15; set(h,’LineWidth ’,1.2); rand(’state ’ ,2); xlabel(’Input x’); x = rand(N ,1); ylabel(’Output y’); y = sin (2* pi *2* x. ^2) + 0.2*randn(N ,1); title(’Chirp Nearest Neighbor Interpolation ’); xt = (0:0 .0001 :1) ’; % Test inputs set(gca ,’Box ’,’Off ’); grid on; % ================================================ axis ([0 1 -2 2]); % Linear Interpolation AxisSet (8); % ================================================ print -depsc InterpolationNearestNeighbor; figure; FigureSet (1,’LTX ’); % ================================================ yh = interp1(x,y,xt ,’linear ’); % Polynomial Interpolation h = plot(xt ,yh ,’b’,x,y,’r.’); % ================================================ set(h,’MarkerSize ’ ,8); A = zeros(N,N); set(h,’LineWidth ’,1.2); for cnt = 1: size(A,2), xlabel(’Input x’); A(:,cnt) = x.^(cnt -1); ylabel(’Output y’); end; title(’Chirp Linear Interpolation ’); w = pinv(A)*y; set(gca ,’Box ’,’Off ’); At = zeros(length(xt),N); grid on; for cnt = 1: size(A,2), axis ([0 1 -2 2]); At(:,cnt) = xt. ^(cnt -1); AxisSet (8); end; print -depsc InterpolationLinear; J. McNames Portland State University ECE 4/557 Univariate Smoothing Ver. 1.25 5 J. McNames Portland State University ECE 4/557 Univariate Smoothing Ver. 1.25 6 yh = At*w; grid on; axis ([0 1 -2 2]); figure; AxisSet (8); FigureSet (1,’LTX ’); print -depsc InterpolationCubicSpline ; h = plot(xt ,yh ,’b’,x,y,’r.’); set(h,’MarkerSize ’ ,8); % ================================================ set(h,’LineWidth ’,1.2); % Cubic Spline Interpolation xlabel(’Input x’); % ================================================ ylabel(’Output y’); figure; title(’Chirp Polynomial Interpolation ’); FigureSet (1,’LTX ’); set(gca ,’Box ’,’Off ’); yt = sin (2* pi *2* xt. ^2); grid on; h = plot(xt ,yt ,’b’,x,y,’r.’); axis ([0 1 -2 2]); set(h,’MarkerSize ’ ,8); set(h,’LineWidth ’,1.2); AxisSet (8); xlabel(’Input x’); ylabel(’Output y’); print -depsc InterpolationPolynomial; title(’Chirp Optimal Model ’); set(gca ,’Box ’,’Off ’); % ================================================ grid on; % Cubic Spline Interpolation axis ([0 1 -2 2]); % ================================================ AxisSet (8); figure; print -depsc InterpolationOptimalModel ; FigureSet (1,’LTX ’); yh = spline(x,y,xt); h = plot(xt ,yh ,’b’,x,y,’r.’); set(h,’MarkerSize ’ ,8); set(h,’LineWidth ’,1.2); xlabel(’Input x’); ylabel(’Output y’); title(’Chirp Cubic Spline Interpolation ’); set(gca ,’Box ’,’Off ’); J. McNames Portland State University ECE 4/557 Univariate Smoothing Ver. 1.25 7 J. McNames Portland State University ECE 4/557 Univariate Smoothing Ver. 1.25 8

  3. Example 2: Nearest Neighbor Interpolation Example 2: MATLAB Code Same data set and test inputs as linear interpolation example. Chirp Nearest Neighbor Interpolation 2 1.5 1 0.5 Output y 0 −0.5 −1 −1.5 −2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Input x J. McNames Portland State University ECE 4/557 Univariate Smoothing Ver. 1.25 9 J. McNames Portland State University ECE 4/557 Univariate Smoothing Ver. 1.25 10 Example 3: Polynomial Interpolation Example 3: MATLAB Code Same data set and test inputs as linear interpolation example. Chirp Polynomial Interpolation 2 1.5 1 0.5 Output y 0 −0.5 −1 −1.5 −2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Input x J. McNames Portland State University ECE 4/557 Univariate Smoothing Ver. 1.25 11 J. McNames Portland State University ECE 4/557 Univariate Smoothing Ver. 1.25 12

  4. Example 4: Cubic Spline Interpolation Example 4: MATLAB Code Same data set and test inputs as linear interpolation example. Chirp Cubic Spline Interpolation 2 1.5 1 0.5 Output y 0 −0.5 −1 −1.5 −2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Input x J. McNames Portland State University ECE 4/557 Univariate Smoothing Ver. 1.25 13 J. McNames Portland State University ECE 4/557 Univariate Smoothing Ver. 1.25 14 Interpolation Comments Smoothing • There are an infinite number of functions that satisfy the • For the smoothing problem, even the constraint is relaxed interpolation constraint: ˆ g ( x i ) ≈ y i ∀ i ˆ g ( x i ) = y i ∀ i • The data set can be merely suggesting what the model output • Of course, we would like to choose the model that minimizes the should be approximately at some specified points prediction error • We need another constraint or assumption about the relationship • Given only data, there is no way to do this exactly between x and y to have enough constraints to uniquely specify the model • Our data set only specifies what ˆ g ( x ) should be at specific points • What should it be in between these points? • In practice, the method of interpolation is usually chosen by the user J. McNames Portland State University ECE 4/557 Univariate Smoothing Ver. 1.25 15 J. McNames Portland State University ECE 4/557 Univariate Smoothing Ver. 1.25 16

  5. Smoothing Assumptions and Statistical Model Example 5: Interpolation Optimal Model y = g ( x ) + ε Chirp Optimal Model 2 • Generally we assume that the data was generated from the statistical model above 1.5 • ε i is a random variable with the following assumed properties 1 – Zero mean: E[ ε ] = 0 0.5 – ε i and ε j are independently distributed for i � = j Output y – ε i is identically distributed 0 • The two additional assumptions are usually made for the −0.5 smoothing problem −1 – g ( x ) is continuous – g ( x ) is smooth −1.5 −2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Input x J. McNames Portland State University ECE 4/557 Univariate Smoothing Ver. 1.25 17 J. McNames Portland State University ECE 4/557 Univariate Smoothing Ver. 1.25 18 Smoothing Bias-Variance Tradeoff Recall that y i = g ( x i ) + ε i � g ( x )) 2 � MSE( x ) = E ( g ( x ) − ˆ � g ( x )]) 2 � g ( x )]) 2 + E • When we add noise, we can drop the interpolation constraint: = ( g ( x ) − E[ˆ (ˆ g ( x ) − E[ˆ ˆ g ( x i ) = y i ∀ i Bias 2 + Variance = • But we still want ˆ g ( · ) to be consistent with (i.e. close to) the data: ˆ g ( x i ) ≈ y i • Fundamental smoother tradeoff: – Smoothness of the estimate ˆ g ( x ) • The methods we will discuss are biased in favor of models that are smooth – Fit to the data • This can also be framed as a bias-variance tradeoff J. McNames Portland State University ECE 4/557 Univariate Smoothing Ver. 1.25 19 J. McNames Portland State University ECE 4/557 Univariate Smoothing Ver. 1.25 20

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend