unitary matrix integrals jm elements primitive
play

Unitary Matrix Integrals, JM Elements, Primitive Factorizations Sho - PowerPoint PPT Presentation

Unitary Matrix Integrals, JM Elements, Primitive Factorizations Sho Matsumoto and Jonathan Novak Nagoya and MSRI/Waterloo FPSAC 2010 August 3, 2010 Melencolia I , Albrecht D urer, 1514 Melencolia detail: D urers magic square


  1. Unitary Matrix Integrals, JM Elements, Primitive Factorizations Sho Matsumoto and Jonathan Novak Nagoya and MSRI/Waterloo FPSAC 2010 August 3, 2010

  2. Melencolia I , Albrecht D¨ urer, 1514

  3. Melencolia detail: D¨ urer’s magic square

  4. Enumeration of magic squares H ( m , n ) := number of n × n magic squares with magic sum m . H ( m , n ) = ?

  5. Some specific formulas � � H ( m , 1) = 1 m � � � j m − j H ( m , 2) = m + 1 � m − j j � m + 2 � � m + 3 � � m + 4 � H ( m , 3) = + + 4 4 4

  6. Some specific formulas H (1 , n ) = n ! � permutation matrices � e z / 2 � z n √ 1 − z H (2 , n ) = n ! n !

  7. A general formula Theorem (Diaconis-Gamburd) For any N ≥ mn , � n dU . e m ( U ) n e m ( U ) H ( m , n ) = U ( N ) U ( N ) = { N × N complex matrices , U ∗ = U − 1 } dU = normalized Haar measure on U ( N ) N � ( − 1) m e m ( U ) x N − m . det( xI − U ) = m =0

  8. Why? e m ( U ) = m th elementary symmetric function of eigenvalues of U . ∞ N � � Λ n Λ n Λ = ⊕ . n =0 n = N +1 � �� � � �� � isometric ֒ → L 2 ( U ( N )) distorted � � f , g � Hall = f ( ǫ 1 ( u ) , . . . , ǫ n ( U ) , 0 , . . . ) g ( ǫ 1 ( u ) , . . . , ǫ n ( U ) , 0 , . . . ) dU U ( N ) � e λ , e µ � = � h λ , h µ � = N λµ .

  9. Another point of view � e m ( U ) = m × m principal minors of U   u 11 u 12 u 13 � � � � � � u 11 u 12 u 11 u 13 u 22 u 23 � � � � � �  = � + � + e 2 u 21 u 22 u 23 � � � � � �  u 21 u 22 u 31 u 23 u 32 u 33 � � � � u 31 u 32 u 33 = u 11 u 22 − u 12 u 21 + u 11 u 33 − u 13 u 31 + u 22 u 33 − u 23 u 32 . Monomial integrals: � � u IJ , u I ′ J ′ � L 2 = u i (1) j (1) . . . u i ( n ) j ( n ) u i ′ (1) j ′ (1) . . . u i ′ ( n ) j ′ ( n ) dU . U ( N )

  10. A random matrix   u 11 u 12 u 13 u 14 u 15 . . . u 1 N u 21 u 22 u 23 u 24 u 25 . . . u 2 N     . . . u 31 u 32 u 33 u 34 u 35 u 3 N     u 41 u 42 u 43 u 44 u 45 . . . u 4 N     . . .  u 51 u 52 u 53 u 54 u 55 u 5 N    . . . . . . ...   . . . . . . . . . . . .   u N 1 u N 2 u N 3 u N 4 u N 5 . . . u NN { columns } is an orthonormal basis of C N .

  11. Permutation correlators   • •     •   �   • u 11 u 22 u 33 u 44 u 11 u 22 u 33 u 44 dU �     U ( N )         • •     •   �   • � u 11 u 22 u 33 u 44 u 12 u 23 u 34 u 41 dU     U ( N )      

  12. 4-point identity correlator: heuristics   • •     •   �   • u 11 u 22 u 33 u 44 u 11 u 22 u 33 u 44 dU �     U ( N )       � u 11 u 22 u 33 u 44 u 11 u 22 u 33 u 44 dU U ( N ) � � � � | u 11 | 2 dU · | u 22 | 2 dU · | u 33 | 2 dU · | u 44 | 2 dU ∼ U ( N ) U ( N ) U ( N ) U ( N ) ∼ 1 N · 1 N · 1 N · 1 N

  13. 4-point identity correlator: true value 4-point identity correlator, π = (1)(2)(3)(4): � u 11 u 22 u 33 u 44 u 11 u 22 u 33 u 44 dU U ( N ) = 1 N 4 + 6 N 6 + 41 N 8 + 316 N 10 + 2631 N 12 + 22826 + 202021 + . . . N 14 N 16 Perturbative expansion � generating function

  14. Genus expansion: Hermitian matrix models Theorem (Harer-Zagier) � ε g ( n ) � tr( H 2 n ) GUE ( dH ) = N 2 g , H ( N ) g ≥ 0 where ε g ( n ) = # one-face maps with n edges on genus g surface.

  15. Jucys-Murphy elements   (1 2) (1 3) (1 4) (1 5) (1 6) 0 (2 3) (2 4) (2 5) (2 6)     C 21111 = C 1 (6) = 0 0 (3 4) (3 5) (3 6)     0 0 0 (4 5) (4 6)   0 0 0 0 (5 6) J 2 = (1 2) J 3 = (1 3) + (2 3) J 4 = (1 4) + (2 4) + (3 4) J 5 = (1 5) + (2 5) + (3 5) + (4 5) J 6 = (1 6) + (2 6) + (3 6) + (4 6) + (5 6) JM elements commute, but { J 1 , J 2 , . . . , J n } �⊂ Z ( n ) .

  16. The JM specialization Theorem (Jucys) We have a specialization Ξ n : Λ → Z ( n ) defined by f (Ξ n ) = f ( J 1 , J 2 , . . . , J n , 0 , 0 , . . . ) . Proof. � e k (Ξ n ) = # { π = ( s 1 t 1 )( s 2 t 2 ) . . . ( s k t k ) : t 1 < t 2 < · · · < t k } π π ∈ S ( n ) � = π | π | = k � = C µ ( n ) ∈ Z ( n ) . | µ | = k

  17. Class expansion problem � a f f (Ξ n ) = µ ( n ) C µ ( n ) µ a f µ ( n ) = ?

  18. Class expansion: examples e 4 (Ξ n ) = 1 C 4 ( n ) + 1 C 31 ( n ) + 1 C 22 ( n ) + 1 C 1111 ( n ) p 4 (Ξ n ) = 1 C 4 ( n ) + (3 n − 4) C 2 ( n ) + 4 C 11 ( n ) + 1 6 n ( n − 1)(4 n − 5) C 0 ( n ) h 4 (Ξ n ) = 14 C 4 ( n ) + 5 C 31 ( n ) + 4 C 22 ( n ) + 2 C 211 ( n ) + 1 C 1111 ( n ) + ( n 2 + 8 n − 23) C 2 ( n ) + 1 2( n 2 + 7 n − 4) C 11 ( n ) + 1 24 n ( n − 1)(3 n 2 + 17 n − 34) C 0 ( n )

  19. The connection with permutation correlators Theorem For any π ∈ C µ ( n ) , � ( − 1) k a h k µ ( n ) � u 11 . . . u nn u 1 π (1) . . . u n π ( n ) dU = . N k U ( N ) k ≥ 0

  20. Connection coefficients � b αβ...ζ C α ( n ) C β ( n ) . . . C ζ ( n ) = ( n ) C µ ( n ) µ µ C 2 ( n ) C 11 ( n ) = 5 C 4 ( n ) + 4 C 31 ( n ) + 1 C 211 ( n ) + 3( n − 3) C 2 ( n ) + 4( n − 4) C 11 ( n ) .

  21. Top connection coefficients Rumour has it there is an explicit combinatorial formula for all top connection coefficients.

  22. Top class coefficients m 31 (Ξ n ) = 4 C 4 ( n ) + 1 C 31 ( n ) + 2(3 n − 7) C 2 ( n ) + 2(2 n − 3) C 11 ( n ) + 1 3 n ( n − 1)( n − 2) C 0 ( n ) m 22 (Ξ n ) = 2 C 4 ( n ) + 1 C 22 ( n ) + 1 2( n 2 − n − 4) C 2 ( n ) + 2 C 11 ( n ) + 1 24 n ( n − 1)( n − 2)(3 n − 1) C 0 ( n ) m 211 (Ξ n ) = 6 C 4 ( n ) + 3 C 31 ( n ) + 2 C 22 ( n ) + 1 C 211 ( n ) + 1 2( n − 3)( n + 2) C 2 ( n ) + 1 2( n 2 − n − 4) C 11 ( n )

  23. Top class coefficients Theorem For | µ | = | λ | we have � a m λ RC( λ 1 ) . . . RC( λ ℓ ( µ ) ) , = µ ( λ 1 ,...,λ ℓ ( µ ) ) ∈R ( λ,µ ) where R ( λ, µ ) = { ( λ 1 , . . . , λ ℓ ( µ ) ) : λ i ⊢ µ i , λ 1 ∪ · · · ∪ λ ℓ ( µ ) = λ } and | λ | ! RC( λ ) = ( | λ | − ℓ ( λ ) + 1)! � m i ( λ )! are refined Catalan numbers: � RC( λ ) = Cat k . λ ⊢ k

  24. Class coefficients: combinatorial approach Proof. a m λ counts minimal primitive factorizations of π ∈ C µ ( n ) with µ frequencies prescribed by λ : π = ( ∗ 2) . . . ( ∗ 2) � ( ∗ 3) . . . ( ∗ 3) � . . . ( ∗ n ) . . . ( ∗ n ) � . � �� � �� � �� Example of a factorization counted by a m 33111 : 9 (1 2 . . . 10) = (2 3) � �� � (4 5)(3 5)(1 5) � (7 8)(6 8)(5 8) � (8 9) � �� � (9 10) � �� � . � �� � �� Left and right sequences: L = 2 4 3 1 7 6 5 8 9 (312-avoiding perm of type λ ) R = 3 5 5 5 8 8 8 9 10 (primitive (reverse) parking fcn of type λ ) .

  25. Class coefficients: combinatorial approach Corollary ℓ ( µ ) � h | µ | a = Cat µ i . µ i =1 Example h 4 (Ξ n ) = Cat 4 C 4 ( n ) + Cat 3 Cat 1 C 31 ( n ) + Cat 2 Cat 2 C 22 ( n ) + Cat 2 Cat 1 Cat 1 C 211 ( n ) + Cat 1 Cat 1 Cat 1 Cat 1 C 1111 ( n ) + ( n 2 + 8 n − 23) C 2 ( n ) + 1 2( n 2 + 7 n − 4) C 11 ( n ) + 1 24 n ( n − 1)(3 n 2 + 17 n − 34) C 0 ( n )

  26. Top class coefficients in action Corollary For any π ∈ C µ ( n ) , � 1 ℓ ( µ ) � � � ( − 1) | µ | N n + | µ | u 11 . . . u nn u 1 π (1) . . . u n π ( n ) dU = Cat µ i + O . N 2 U ( N ) i =1 Theorem Random matrix U = [ u ij ] ∈ U ( N ) . Random measure µ N = 1 � δ u ij ∈ M ( D ) . N 2 i , j Deterministic limit: µ N → δ 0 weakly in M ( D ) .

  27. Macdonald’s symmetric functions Theorem (Macdonald) There exists a basis { g µ } of Λ such that � b αβ...ζ g α g β . . . g ζ = g µ µ µ Theorem Forgotten symmetric functions → Macdonald symmetric functions: � ( − 1) | λ | f λ = a m λ µ g µ . µ ⊢| λ |

  28. Connection coefficients: algebraic approach Theorem (Frobenius-Burnside) ω µ ( λ ) ω α ( λ ) ω β ( λ ) . . . ω ζ ( λ )(dim λ ) 2 � b αβ...ζ ( n ) = µ n ! λ ⊢ n = � ω µ ( λ ) ω α ( λ ) ω β ( λ ) . . . ω ζ ( λ ) � Plancherel( n ) , where ω µ ( λ ) = | C µ ( n ) | χ λ ( π ) dim λ , π ∈ C µ ( n ) .

  29. Connection coefficients: algebraic approach � ω 1 ( λ ) = c ( � ) � ∈ λ ω n − 1 ( λ ) = ± [ λ is a hook] Theorem (Jackson, Shapiro-Shapiro-Vainshtein) The number of factorizations of (1 2 . . . n ) into n − 1 + 2 g transpositions is n − 1+2 g �� z 2 g � �� � � n − 1 + 2 g �� sinh z / 2 � n − 1 11 . . . 1 ( n ) = n n − 2 n 2 g b n − 1 n − 1 (2 g )! z / 2

  30. Class coefficients: algebraic approach Theorem (Analogue Frobenius-Burnside (Jucys)) f ( A λ ) ω µ ( λ )(dim λ ) 2 1 f ( A λ ) � � a f χ λ ( π ) . µ ( n ) = = | C µ ( n ) | n ! H λ λ ⊢ n λ ⊢ n We can use this to: • Obtain a formula for U ( N )-correlators in terms of S ( n )-characters. • Obtain an analogue of the JSSV formula.

  31. Class coefficients: algebraic approach Theorem Ordinary generating function: � a h k µ ( n ) z k . Φ µ ( z ; n ) := k ≥ 0 Then χ λ ( π ) � Φ µ ( z ; n ) = � ∈ λ (1 − c ( � ) z ) . � λ ⊢ n Corollary � χ λ ( π ) � u 11 . . . u nn u 1 π (1) . . . u n π ( n ) = � ∈ λ ( N + c ( � )) . � U ( N ) λ ⊢ n

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend