unique continuation for waves carleman estimates and
play

Unique Continuation for Waves, Carleman Estimates, and Applications - PowerPoint PPT Presentation

. . . . . . . . . . . . . . . Unique Continuation for Waves, Carleman Estimates, and Applications Arick Shao Queen Mary University of London Leeds Analysis and Applications Seminar 14 February, 2018 Arick Shao (QMUL) Unique


  1. . . . . . . . . . . . . . . . Unique Continuation for Waves, Carleman Estimates, and Applications Arick Shao Queen Mary University of London Leeds Analysis and Applications Seminar 14 February, 2018 Arick Shao (QMUL) Unique Continuation . . . . . . . . . . . . . . . . . . . . . . . . . 1 / 36

  2. . Recent unique continuation (UC) results for wave equations. . . . . . . . . . Outline 1 UC “from infjnity”. . 2 Theory of UC. Why is “classical” theory not enough? 3 Some ideas behind Carleman estimates. Main analysis tool for UC. 4 (Other) Applications of Carleman estimates Focus on control theory. Arick Shao (QMUL) Unique Continuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 / 36

  3. . . . . . . . . . . . . . . . . Unique Continuation from Infjnity Section 1 Unique Continuation from Infjnity Arick Shao (QMUL) Unique Continuation . . . . . . . . . . . . . . . . . . . . . . . . 3 / 36

  4. . . . . . . . . . . . . . . Unique Continuation from Infjnity Wave Equations Consider the wave equation: Generalisations: linear/nonlinear waves, systems, geometric waves. Physics: Maxwell equations, Yang-Mills equations, Einstein equations, fmuids Initial value problem: Solution “depends continuously on” initial data. Arick Shao (QMUL) Unique Continuation . . . . . . . . . . . . . . . . . . . . . . . . . . 4 / 36 □ φ := (− ∂ 2 t + ∆ x ) φ = 0, φ : R t × R n x → R . □ φ = F ( t , x , φ, D φ ) , φ | t = 0 = φ 0 , ∂ t φ | t = 0 = φ 1 . In general, ∃ ! solution for “nice” initial data ( φ 0 , φ 1 ) .

  5. . Unique Continuation from Infjnity . . . . . . . . . . Radiation . x t Propagate at fjxed, fjnite speed. Decay in space and time at known rates. Can make sense of “asymptotics at infjnity”: Leading order coeffjcient: radiation fjeld. Question (UC from infjnity) Are solutions of wave equations determined by its “data at infjnity”? Arick Shao (QMUL) Unique Continuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 / 36 Regular solutions of □ φ = 0: Propagation of waves ( R 1 + 1 ).

  6. . . . . . . . . . . . . . . . Unique Continuation from Infjnity Minkowski Geometry Theme: Geometric viewpoint for studying wave equations. Robust techniques applicable to many curved backgrounds. Applications to problems in relativity. Setting of special relativity. Arick Shao (QMUL) Unique Continuation . . . . . . . . . . . . . . . . . . . . . . . . . 6 / 36 Natural setting: Minkowski spacetime ( R 1 + n , m ) . Minkowski metric: m := − dt 2 + d ( x 1 ) 2 + · · · + d ( x n ) 2 . □ = m αβ ∇ αβ : natural second-order PDO in Minkowski geometry. Analogue of ∆ in Euclidean geometry.

  7. . . . . . . . . . . . . Unique Continuation from Infjnity . Infjnity R T R T Previous picture, projected. Infjnity visualised via Penrose compactifjcation. Infjnity realised as boundary of shaded region. For this talk, useful for drawing pictures. Arick Shao (QMUL) Unique Continuation . . . . . . . . . . . . . . . 7 / 36 . . . . . . . . . . . . I + Conformal transformation m � → Ω 2 m . R 1 + n ( R 1 + n , Ω 2 m ) isometrically embeds into relatively I − compact region in R × S n . R × S n , mod S n − 1 . Future/past null infjnity I ± : Null geodesics I + (bicharacteristics of □ ) terminate here. R 1 + n Radiation fjeld manifested at I ± . I −

  8. . . . . . . . . . . . . . . . Unique Continuation from Infjnity Main Questions Question (UC from infjnity) For linear waves: Are nonradiating waves trivial? Arick Shao (QMUL) Unique Continuation . . . . . . . . . . . . . . . . . . . . . . . . . 8 / 36 Does φ on some part of I ± determine φ inside? General linear/nonlinear waves, e.g., ( □ + ∇ X + V ) φ = 0 ? Geometric waves on curved backgrounds: □ g φ = g αβ ∇ 2 αβ φ = . . . ? I + φ = 0 If φ = 0 on some part of I ± , then is φ = 0 inside? φ = 0 ? φ = 0 I −

  9. . . . . . . . . . . . . . . Unique Continuation from Infjnity Scattering Results (Friedlander) Isometry between initial data (at Various generalisations: special black hole spacetimes. However, we are more interested in: Ill-posed settings: cannot solve the wave equation. Other linear and geometric waves. Arick Shao (QMUL) Unique Continuation . . . . . . . . . . . . . . . . . . . . . . 9 / 36 . . . . t = 0) and radiation fjeld (at I + ). I + Applies only to free waves ( □ φ = 0). t = 0 Red: Solve forward from t = 0. Product manifolds R × X , special nonlinear waves, Blue: Solve backward from I + .

  10. . . . . . . . . . . . . . . . . Unique Continuation from Infjnity Result Near Infjnity Theorem ( Alexakis–Schlue–S., 2015 ) Arick Shao (QMUL) Unique Continuation . . . . . . . . . . . . . . . . . . . 10 / 36 . . . . . Assume φ is a solution, near I ± , of I + φ, ∇ φ = 0 □ φ + ∇ X φ + V φ = 0 , φ = 0 where X, V decay suffjciently toward I ± . φ, ∇ φ = 0 2 + ε ) I ± , then φ = 0 in the If φ , ∇ φ vanish to ∞ -order on ( 1 I − 2 + ε ) I ± . interior near ( 1 Remark. The ∞ -order vanishing is optimal. Counterexamples if φ vanishes only to fjnite order. On R 1 + n ( n > 2), can take φ = ∇ k x r −( n − 2 ) .

  11. . Geometric Robustness . . . . . . . . . . Unique Continuation from Infjnity Question . Can UC result be extended to curved backgrounds? Asymptotically fmat spacetimes: those with “similar structure of infjnity”. Theorem ( Alexakis–Schlue–S., 2015 ) The main result extends to a large class of (both stationary and dynamic) asymptotically fmat spacetimes, including: 1 Perturbations of Minkowski spacetimes. 2 Schwarzschild and Kerr spacetimes, and perturbations. Arick Shao (QMUL) Unique Continuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 / 36 I + φ, ∇ φ = 0 I − For (2), result can be localised near ε I ± .

  12. . . . . . . . . . . . . . . . . Unique Continuation from Infjnity Finite-Order Vanishing? Question Arick Shao (QMUL) Unique Continuation . . . . . . . . . . . . . . . . . . . 12 / 36 . . . . . On Minkowski spacetime ( R 1 + n , m ) : Can ∞ -order vanishing condition be somehow removed? x r −( n − 2 ) . Recall. Counterexamples ∇ k Note that these blow up at r = 0. Idea. Impose global regularity for φ , up to r = 0.

  13. . . . . . . . . . . . . . . . . Unique Continuation from Infjnity The Global Result Theorem ( Alexakis–S., 2015 ) Otherwise, there are counterexamples. Arick Shao (QMUL) Unique Continuation . . . . . . . . . . . . . . . . . . . 13 / 36 . . . . . I + Assume φ is a regular solution in D of φ, ∇ φ = 0 D □ φ + V φ = 0 , ∥ V ∥ L ∞ ≤ C, φ = 0 φ, ∇ φ = 0 where V also decays toward I ± as before. I − 2 I ± , with A 0 depending If φ , ∇ φ vanish to order A > A 0 at 1 on C, then φ = 0 everywhere on D (and hence R 1 + n ). Remark. The L ∞ -assumption on V is necessary.

  14. . . . . . . . . . . . . . . . Unique Continuation from Infjnity The Global Nonlinear Theorem Question Can some special wave equations be better behaved? Theorem ( Alexakis–S., 2015 ) Arick Shao (QMUL) Unique Continuation . . . . . . . . . . . . . . . . . . . . 14 / 36 . . . . . Suppose φ is a regular solution in D of □ φ + V | φ | p − 1 φ = 0 , p ≥ 1 , where V satisfjes a monotonicity property (depending on p). 2 I ± for any δ > 0 , then φ = 0 on D . If φ , ∇ φ vanishes to order δ at 1 Idea. Estimates not for □ , but for □ V , p φ := □ φ + V · | φ | p − 1 φ .

  15. . . . . . . . . . . . . . . . . Unique Continuation Theory Section 2 Unique Continuation Theory Arick Shao (QMUL) Unique Continuation . . . . . . . . . . . . . . . . . . . . . . . . 15 / 36

  16. . . . . . . . . . . . . . . . Unique Continuation Theory Unique Continuation Unique continuation (UC): classical problem in PDEs. When we cannot solve a PDE, we can still ask if solutions are unique. Problem (Unique Continuation) Suppose: Arick Shao (QMUL) Unique Continuation . . . . . . . . . . . . . . . . . . . . 16 / 36 . . . . . □ g φ + ... = 0 φ solves ( □ g + ∇ X + V ) φ = 0 . Σ φ, ∇ φ vanish on a hypersurface Σ . φ = 0 ? φ, ∇ φ = 0 Must φ vanish on one side of Σ ? In particular, we are interested in Σ ⊆ I ± .

  17. . . . . . . . . . . . . . . . Unique Continuation Theory The Classical Theory (Cauchy–Kovalevskaya) Existence, uniqueness of analytic solutions. (Holmgren, F. John) Solution unique even in nonanalytic classes. Classical theory for non-analytic equations (Calderón, Hörmander): Remark. Classical UC results are purely local. Arick Shao (QMUL) Unique Continuation . . . . . . . . . . . . . . . . . . . . . . . . . 17 / 36 Ancient theory: analytic PDE, noncharacteristic Σ . Crucial point: pseudoconvexity of Σ . Σ pseudoconvex ⇒ Carleman estimates ⇒ UC from Σ . (Alinhac–Baouendi) Σ not pseudoconvex ⇒ ∃ X , V with counterexamples. UC from a small neighbourhood of P ∈ Σ .

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend