uniform interpolation
play

Uniform Interpolation Part 1: Intuitionistic Logic George Metcalfe - PowerPoint PPT Presentation

Uniform Interpolation Part 1: Intuitionistic Logic George Metcalfe Mathematical Institute University of Bern BLAST 2018, University of Denver, 6-10 August 2018 George Metcalfe (University of Bern) Uniform Interpolation August 2018 1 / 30


  1. An Axiom System for Intuitionistic Logic Let us fix a language with connectives ∧ , ∨ , → , ⊥ , ⊤ and write T ⊢ IL α if a formula α is derivable from a set of formulas T using the axiom schema 1. α → ( β → α ) 2. ( α → ( β → γ )) → (( α → β ) → ( α → γ )) 3. ( α ∧ β ) → α 4. ( α ∧ β ) → β 5. α → ( β → ( α ∧ β )) 6. α → ( α ∨ β ) 7. β → ( α ∨ β ) 8. ( α → γ ) → (( β → γ ) → (( α ∨ β ) → γ )) 9. ⊥ → α 10. α → ⊤ together with the modus ponens rule: from α and α → β , infer β . George Metcalfe (University of Bern) Uniform Interpolation August 2018 9 / 30

  2. Heyting Algebras A Heyting algebra is an algebraic structure � A , ∧ , ∨ , → , ⊥ , ⊤� such that George Metcalfe (University of Bern) Uniform Interpolation August 2018 10 / 30

  3. Heyting Algebras A Heyting algebra is an algebraic structure � A , ∧ , ∨ , → , ⊥ , ⊤� such that (i) � A , ∧ , ∨ , ⊥ , ⊤� is a bounded lattice; George Metcalfe (University of Bern) Uniform Interpolation August 2018 10 / 30

  4. Heyting Algebras A Heyting algebra is an algebraic structure � A , ∧ , ∨ , → , ⊥ , ⊤� such that (i) � A , ∧ , ∨ , ⊥ , ⊤� is a bounded lattice; (ii) a ≤ b → c ⇐ ⇒ a ∧ b ≤ c for all a , b , c ∈ A . George Metcalfe (University of Bern) Uniform Interpolation August 2018 10 / 30

  5. Heyting Algebras A Heyting algebra is an algebraic structure � A , ∧ , ∨ , → , ⊥ , ⊤� such that (i) � A , ∧ , ∨ , ⊥ , ⊤� is a bounded lattice; (ii) a ≤ b → c ⇐ ⇒ a ∧ b ≤ c for all a , b , c ∈ A . The class HA of Heyting algebras forms a variety . George Metcalfe (University of Bern) Uniform Interpolation August 2018 10 / 30

  6. Heyting Algebras A Heyting algebra is an algebraic structure � A , ∧ , ∨ , → , ⊥ , ⊤� such that (i) � A , ∧ , ∨ , ⊥ , ⊤� is a bounded lattice; (ii) a ≤ b → c ⇐ ⇒ a ∧ b ≤ c for all a , b , c ∈ A . The class HA of Heyting algebras forms a variety . Examples: 1. any Boolean algebra; George Metcalfe (University of Bern) Uniform Interpolation August 2018 10 / 30

  7. Heyting Algebras A Heyting algebra is an algebraic structure � A , ∧ , ∨ , → , ⊥ , ⊤� such that (i) � A , ∧ , ∨ , ⊥ , ⊤� is a bounded lattice; (ii) a ≤ b → c ⇐ ⇒ a ∧ b ≤ c for all a , b , c ∈ A . The class HA of Heyting algebras forms a variety . Examples: 1. any Boolean algebra; 2. letting U be the set of upsets of a poset � X , ≤� , �U , ∩ , ∪ , → , ∅ , X � where Y → Z = { a ∈ X | a ≤ b ∈ Y ⇒ b ∈ Z } ; George Metcalfe (University of Bern) Uniform Interpolation August 2018 10 / 30

  8. Heyting Algebras A Heyting algebra is an algebraic structure � A , ∧ , ∨ , → , ⊥ , ⊤� such that (i) � A , ∧ , ∨ , ⊥ , ⊤� is a bounded lattice; (ii) a ≤ b → c ⇐ ⇒ a ∧ b ≤ c for all a , b , c ∈ A . The class HA of Heyting algebras forms a variety . Examples: 1. any Boolean algebra; 2. letting U be the set of upsets of a poset � X , ≤� , �U , ∩ , ∪ , → , ∅ , X � where Y → Z = { a ∈ X | a ≤ b ∈ Y ⇒ b ∈ Z } ; 3. letting O be the set of open subsets of R with the usual topology, �O , ∩ , ∪ , → , ∅ , R � where Y → Z = int ( Y c ∪ Z ) . George Metcalfe (University of Bern) Uniform Interpolation August 2018 10 / 30

  9. Equational Consequence For any set of equations Σ ∪ { α ≈ β } over the language of Heyting algebras with variables in x , we write Σ | = HA α ≈ β George Metcalfe (University of Bern) Uniform Interpolation August 2018 11 / 30

  10. Equational Consequence For any set of equations Σ ∪ { α ≈ β } over the language of Heyting algebras with variables in x , we write Σ | = HA α ≈ β if for any homomorphism e from the term algebra over x to some A ∈ HA , e ( γ ) = e ( δ ) for all γ ≈ δ ∈ Σ = ⇒ e ( α ) = e ( β ) . George Metcalfe (University of Bern) Uniform Interpolation August 2018 11 / 30

  11. Equivalence Theorem HA is an equivalent algebraic semantics for IL George Metcalfe (University of Bern) Uniform Interpolation August 2018 12 / 30

  12. Equivalence Theorem HA is an equivalent algebraic semantics for IL with transformers τ ( α ) = α ≈ ⊤ and ρ ( α ≈ β ) = ( α → β ) ∧ ( β → α ) . George Metcalfe (University of Bern) Uniform Interpolation August 2018 12 / 30

  13. Equivalence Theorem HA is an equivalent algebraic semantics for IL with transformers τ ( α ) = α ≈ ⊤ and ρ ( α ≈ β ) = ( α → β ) ∧ ( β → α ) . (a) For any set of formulas T ∪ { α } , T ⊢ IL α ⇐ ⇒ τ [ T ] | = HA τ ( α ) . George Metcalfe (University of Bern) Uniform Interpolation August 2018 12 / 30

  14. Equivalence Theorem HA is an equivalent algebraic semantics for IL with transformers τ ( α ) = α ≈ ⊤ and ρ ( α ≈ β ) = ( α → β ) ∧ ( β → α ) . (a) For any set of formulas T ∪ { α } , T ⊢ IL α ⇐ ⇒ τ [ T ] | = HA τ ( α ) . (b) For any set of equations Σ ∪ { α ≈ β } , Σ | = HA α ≈ β ⇐ ⇒ ρ [ T ] ⊢ IL ρ ( α ≈ β ) . George Metcalfe (University of Bern) Uniform Interpolation August 2018 12 / 30

  15. Equivalence Theorem HA is an equivalent algebraic semantics for IL with transformers τ ( α ) = α ≈ ⊤ and ρ ( α ≈ β ) = ( α → β ) ∧ ( β → α ) . (a) For any set of formulas T ∪ { α } , T ⊢ IL α ⇐ ⇒ τ [ T ] | = HA τ ( α ) . (b) For any set of equations Σ ∪ { α ≈ β } , Σ | = HA α ≈ β ⇐ ⇒ ρ [ T ] ⊢ IL ρ ( α ≈ β ) . (c) α ⊢ IL ρ ( τ ( α )) and ρ ( τ ( α )) ⊢ IL α . George Metcalfe (University of Bern) Uniform Interpolation August 2018 12 / 30

  16. Equivalence Theorem HA is an equivalent algebraic semantics for IL with transformers τ ( α ) = α ≈ ⊤ and ρ ( α ≈ β ) = ( α → β ) ∧ ( β → α ) . (a) For any set of formulas T ∪ { α } , T ⊢ IL α ⇐ ⇒ τ [ T ] | = HA τ ( α ) . (b) For any set of equations Σ ∪ { α ≈ β } , Σ | = HA α ≈ β ⇐ ⇒ ρ [ T ] ⊢ IL ρ ( α ≈ β ) . (c) α ⊢ IL ρ ( τ ( α )) and ρ ( τ ( α )) ⊢ IL α . (d) α ≈ β | = HA τ ( ρ ( α ≈ β )) and τ ( ρ ( α ≈ β )) | = HA α ≈ β . George Metcalfe (University of Bern) Uniform Interpolation August 2018 12 / 30

  17. Sequents A sequent is an ordered pair consisting of a finite multiset of formulas Γ and a formula α , written Γ ⇒ α. George Metcalfe (University of Bern) Uniform Interpolation August 2018 13 / 30

  18. Sequents A sequent is an ordered pair consisting of a finite multiset of formulas Γ and a formula α , written Γ ⇒ α. We typically write Γ , Π for the multiset sum of Γ and Π , and omit brackets. George Metcalfe (University of Bern) Uniform Interpolation August 2018 13 / 30

  19. Sequents A sequent is an ordered pair consisting of a finite multiset of formulas Γ and a formula α , written Γ ⇒ α. We typically write Γ , Π for the multiset sum of Γ and Π , and omit brackets. A sequent calculus GL consists of a set of rules with instances S 1 . . . S n where S , S 1 , . . . , S n are sequents S George Metcalfe (University of Bern) Uniform Interpolation August 2018 13 / 30

  20. Sequents A sequent is an ordered pair consisting of a finite multiset of formulas Γ and a formula α , written Γ ⇒ α. We typically write Γ , Π for the multiset sum of Γ and Π , and omit brackets. A sequent calculus GL consists of a set of rules with instances S 1 . . . S n where S , S 1 , . . . , S n are sequents S A GL -derivation of a sequent S is a finite tree of sequents with root S built using the rules of GL; if such a derivation exists, we write ⊢ GL S . George Metcalfe (University of Bern) Uniform Interpolation August 2018 13 / 30

  21. A Sequent Calculus GIL for Intuitionistic Logic Identity Axioms ( id ) Γ , α ⇒ α George Metcalfe (University of Bern) Uniform Interpolation August 2018 14 / 30

  22. A Sequent Calculus GIL for Intuitionistic Logic Identity Axioms ( id ) Γ , α ⇒ α Left Operation Rules Right Operation Rules ( ⊥⇒ ) ( ⇒⊤ ) Γ , ⊥ ⇒ δ Γ ⇒ ⊤ George Metcalfe (University of Bern) Uniform Interpolation August 2018 14 / 30

  23. A Sequent Calculus GIL for Intuitionistic Logic Identity Axioms ( id ) Γ , α ⇒ α Left Operation Rules Right Operation Rules ( ⊥⇒ ) ( ⇒⊤ ) Γ , ⊥ ⇒ δ Γ ⇒ ⊤ Γ , α, β ⇒ δ Γ ⇒ α Γ ⇒ β ( ∧⇒ ) ( ⇒∧ ) Γ , α ∧ β ⇒ δ Γ ⇒ α ∧ β George Metcalfe (University of Bern) Uniform Interpolation August 2018 14 / 30

  24. A Sequent Calculus GIL for Intuitionistic Logic Identity Axioms ( id ) Γ , α ⇒ α Left Operation Rules Right Operation Rules ( ⊥⇒ ) ( ⇒⊤ ) Γ , ⊥ ⇒ δ Γ ⇒ ⊤ Γ , α, β ⇒ δ Γ ⇒ α Γ ⇒ β ( ∧⇒ ) ( ⇒∧ ) Γ , α ∧ β ⇒ δ Γ ⇒ α ∧ β Γ , α ⇒ δ Γ , β ⇒ δ Γ ⇒ β Γ ⇒ α ( ∨⇒ ) ( ⇒∨ ) l ( ⇒∨ ) r Γ , α ∨ β ⇒ δ Γ ⇒ α ∨ β Γ ⇒ α ∨ β George Metcalfe (University of Bern) Uniform Interpolation August 2018 14 / 30

  25. A Sequent Calculus GIL for Intuitionistic Logic Identity Axioms ( id ) Γ , α ⇒ α Left Operation Rules Right Operation Rules ( ⊥⇒ ) ( ⇒⊤ ) Γ , ⊥ ⇒ δ Γ ⇒ ⊤ Γ , α, β ⇒ δ Γ ⇒ α Γ ⇒ β ( ∧⇒ ) ( ⇒∧ ) Γ , α ∧ β ⇒ δ Γ ⇒ α ∧ β Γ , α ⇒ δ Γ , β ⇒ δ Γ ⇒ β Γ ⇒ α ( ∨⇒ ) ( ⇒∨ ) l ( ⇒∨ ) r Γ , α ∨ β ⇒ δ Γ ⇒ α ∨ β Γ ⇒ α ∨ β Γ , α → β ⇒ α Γ , β ⇒ δ Γ , α ⇒ β ( →⇒ ) ( ⇒→ ) Γ , α → β ⇒ δ Γ ⇒ α → β George Metcalfe (University of Bern) Uniform Interpolation August 2018 14 / 30

  26. A Sequent Calculus GIL for Intuitionistic Logic Identity Axioms Cut Rule Γ ⇒ α Π , α ⇒ δ ( id ) (cut) Γ , α ⇒ α Γ , Π ⇒ δ Left Operation Rules Right Operation Rules ( ⊥⇒ ) ( ⇒⊤ ) Γ , ⊥ ⇒ δ Γ ⇒ ⊤ Γ , α, β ⇒ δ Γ ⇒ α Γ ⇒ β ( ∧⇒ ) ( ⇒∧ ) Γ , α ∧ β ⇒ δ Γ ⇒ α ∧ β Γ , α ⇒ δ Γ , β ⇒ δ Γ ⇒ β Γ ⇒ α ( ∨⇒ ) ( ⇒∨ ) l ( ⇒∨ ) r Γ , α ∨ β ⇒ δ Γ ⇒ α ∨ β Γ ⇒ α ∨ β Γ , α → β ⇒ α Γ , β ⇒ δ Γ , α ⇒ β ( →⇒ ) ( ⇒→ ) Γ , α → β ⇒ δ Γ ⇒ α → β George Metcalfe (University of Bern) Uniform Interpolation August 2018 14 / 30

  27. An Example Derivation ( ⇒→ ) ⇒ (( α → β ) ∧ ( α ∨ γ )) → ( β ∨ γ ) George Metcalfe (University of Bern) Uniform Interpolation August 2018 15 / 30

  28. An Example Derivation ( ∧⇒ ) ( α → β ) ∧ ( α ∨ γ ) ⇒ β ∨ γ ( ⇒→ ) ⇒ (( α → β ) ∧ ( α ∨ γ )) → ( β ∨ γ ) George Metcalfe (University of Bern) Uniform Interpolation August 2018 15 / 30

  29. An Example Derivation ( ∨⇒ ) α → β, α ∨ γ ⇒ β ∨ γ ( ∧⇒ ) ( α → β ) ∧ ( α ∨ γ ) ⇒ β ∨ γ ( ⇒→ ) ⇒ (( α → β ) ∧ ( α ∨ γ )) → ( β ∨ γ ) George Metcalfe (University of Bern) Uniform Interpolation August 2018 15 / 30

  30. An Example Derivation ( →⇒ ) α → β, α ⇒ β ∨ γ ( ∨⇒ ) α → β, α ∨ γ ⇒ β ∨ γ ( ∧⇒ ) ( α → β ) ∧ ( α ∨ γ ) ⇒ β ∨ γ ( ⇒→ ) ⇒ (( α → β ) ∧ ( α ∨ γ )) → ( β ∨ γ ) George Metcalfe (University of Bern) Uniform Interpolation August 2018 15 / 30

  31. An Example Derivation ( id ) α → β, α ⇒ α ( →⇒ ) α → β, α ⇒ β ∨ γ ( ∨⇒ ) α → β, α ∨ γ ⇒ β ∨ γ ( ∧⇒ ) ( α → β ) ∧ ( α ∨ γ ) ⇒ β ∨ γ ( ⇒→ ) ⇒ (( α → β ) ∧ ( α ∨ γ )) → ( β ∨ γ ) George Metcalfe (University of Bern) Uniform Interpolation August 2018 15 / 30

  32. An Example Derivation ( id ) ( ⇒∨ ) l α → β, α ⇒ α β, α ⇒ β ∨ γ ( →⇒ ) α → β, α ⇒ β ∨ γ ( ∨⇒ ) α → β, α ∨ γ ⇒ β ∨ γ ( ∧⇒ ) ( α → β ) ∧ ( α ∨ γ ) ⇒ β ∨ γ ( ⇒→ ) ⇒ (( α → β ) ∧ ( α ∨ γ )) → ( β ∨ γ ) George Metcalfe (University of Bern) Uniform Interpolation August 2018 15 / 30

  33. An Example Derivation ( id ) β, α ⇒ β ( id ) ( ⇒∨ ) l α → β, α ⇒ α β, α ⇒ β ∨ γ ( →⇒ ) α → β, α ⇒ β ∨ γ ( ∨⇒ ) α → β, α ∨ γ ⇒ β ∨ γ ( ∧⇒ ) ( α → β ) ∧ ( α ∨ γ ) ⇒ β ∨ γ ( ⇒→ ) ⇒ (( α → β ) ∧ ( α ∨ γ )) → ( β ∨ γ ) George Metcalfe (University of Bern) Uniform Interpolation August 2018 15 / 30

  34. An Example Derivation ( id ) β, α ⇒ β ( id ) ( ⇒∨ ) l α → β, α ⇒ α β, α ⇒ β ∨ γ ( →⇒ ) ( ⇒∨ ) r α → β, α ⇒ β ∨ γ α → β, γ ⇒ β ∨ γ ( ∨⇒ ) α → β, α ∨ γ ⇒ β ∨ γ ( ∧⇒ ) ( α → β ) ∧ ( α ∨ γ ) ⇒ β ∨ γ ( ⇒→ ) ⇒ (( α → β ) ∧ ( α ∨ γ )) → ( β ∨ γ ) George Metcalfe (University of Bern) Uniform Interpolation August 2018 15 / 30

  35. An Example Derivation ( id ) β, α ⇒ β ( id ) ( ⇒∨ ) l ( id ) α → β, α ⇒ α β, α ⇒ β ∨ γ α → β, γ ⇒ γ ( →⇒ ) ( ⇒∨ ) r α → β, α ⇒ β ∨ γ α → β, γ ⇒ β ∨ γ ( ∨⇒ ) α → β, α ∨ γ ⇒ β ∨ γ ( ∧⇒ ) ( α → β ) ∧ ( α ∨ γ ) ⇒ β ∨ γ ( ⇒→ ) ⇒ (( α → β ) ∧ ( α ∨ γ )) → ( β ∨ γ ) George Metcalfe (University of Bern) Uniform Interpolation August 2018 15 / 30

  36. Soundness and Completeness Theorem For any formulas α 1 , . . . , α n , β : ⊢ GIL α 1 , . . . , α n ⇒ β ⇐ ⇒ { α 1 , . . . , α n } ⊢ IL β. George Metcalfe (University of Bern) Uniform Interpolation August 2018 16 / 30

  37. Soundness and Completeness Theorem For any formulas α 1 , . . . , α n , β : ⊢ GIL α 1 , . . . , α n ⇒ β ⇐ ⇒ { α 1 , . . . , α n } ⊢ IL β. Proof. ( ⇒ ) It suffices to check that the rules of GIL preserve derivability in IL, e.g., Γ ∪ { α } ⊢ IL δ and Γ ∪ { β } ⊢ IL δ = ⇒ Γ ∪ { α ∨ β } ⊢ IL δ. George Metcalfe (University of Bern) Uniform Interpolation August 2018 16 / 30

  38. Soundness and Completeness Theorem For any formulas α 1 , . . . , α n , β : ⊢ GIL α 1 , . . . , α n ⇒ β ⇐ ⇒ { α 1 , . . . , α n } ⊢ IL β. Proof. ( ⇒ ) It suffices to check that the rules of GIL preserve derivability in IL, e.g., Γ ∪ { α } ⊢ IL δ and Γ ∪ { β } ⊢ IL δ = ⇒ Γ ∪ { α ∨ β } ⊢ IL δ. ( ⇐ ) It suffices to check that the axioms of IL are GIL-derivable and that (using the cut rule!) modus ponens preserves GIL-derivability. George Metcalfe (University of Bern) Uniform Interpolation August 2018 16 / 30

  39. Cut Elimination Theorem (Gentzen 1935) Any GIL -derivable sequent is cut-free GIL -derivable. George Metcalfe (University of Bern) Uniform Interpolation August 2018 17 / 30

  40. Cut Elimination Theorem (Gentzen 1935) Any GIL -derivable sequent is cut-free GIL -derivable. Proof idea. We push uppermost cuts upwards in GIL-derivations until they reach axioms and disappear, e.g.. . . George Metcalfe (University of Bern) Uniform Interpolation August 2018 17 / 30

  41. Cut Elimination Theorem (Gentzen 1935) Any GIL -derivable sequent is cut-free GIL -derivable. Proof idea. We push uppermost cuts upwards in GIL-derivations until they reach axioms and disappear, e.g.. . . . . . Π , δ ⇒ δ ( id ) Γ ⇒ δ (cut) Γ , Π ⇒ δ George Metcalfe (University of Bern) Uniform Interpolation August 2018 17 / 30

  42. Cut Elimination Theorem (Gentzen 1935) Any GIL -derivable sequent is cut-free GIL -derivable. Proof idea. We push uppermost cuts upwards in GIL-derivations until they reach axioms and disappear, e.g.. . . . . . . . Π , δ ⇒ δ ( id ) ⇒ = . Γ ⇒ δ (cut) Γ , Π ⇒ δ Γ , Π ⇒ δ George Metcalfe (University of Bern) Uniform Interpolation August 2018 17 / 30

  43. Cut Elimination Theorem (Gentzen 1935) Any GIL -derivable sequent is cut-free GIL -derivable. Proof idea. We push uppermost cuts upwards in GIL-derivations until they reach axioms and disappear, e.g.. . . . . . . . Π , δ ⇒ δ ( id ) ⇒ = . Γ ⇒ δ (cut) Γ , Π ⇒ δ Γ , Π ⇒ δ . . . . . . . . . Π , α ⇒ δ Π , β ⇒ δ Γ ⇒ α Γ ⇒ α ∨ β ( ⇒∨ ) l ( ∨⇒ ) Π , α ∨ β ⇒ δ (cut) Γ , Π ⇒ δ George Metcalfe (University of Bern) Uniform Interpolation August 2018 17 / 30

  44. Cut Elimination Theorem (Gentzen 1935) Any GIL -derivable sequent is cut-free GIL -derivable. Proof idea. We push uppermost cuts upwards in GIL-derivations until they reach axioms and disappear, e.g.. . . . . . . . Π , δ ⇒ δ ( id ) ⇒ = . Γ ⇒ δ (cut) Γ , Π ⇒ δ Γ , Π ⇒ δ . . . . . . . . . . . . . . . Π , α ⇒ δ Π , β ⇒ δ = ⇒ Γ ⇒ α Γ ⇒ α ∨ β ( ⇒∨ ) l ( ∨⇒ ) Γ ⇒ α Π , α ⇒ δ Π , α ∨ β ⇒ δ (cut) (cut) Γ , Π ⇒ δ Γ , Π ⇒ δ George Metcalfe (University of Bern) Uniform Interpolation August 2018 17 / 30

  45. Cut Elimination Theorem (Gentzen 1935) Any GIL -derivable sequent is cut-free GIL -derivable. Proof idea. We push uppermost cuts upwards in GIL-derivations until they reach axioms and disappear, e.g.. . . . . . . . Π , δ ⇒ δ ( id ) ⇒ = . Γ ⇒ δ (cut) Γ , Π ⇒ δ Γ , Π ⇒ δ . . . . . . . . . . . . . . . Π , α ⇒ δ Π , β ⇒ δ = ⇒ Γ ⇒ α Γ ⇒ α ∨ β ( ⇒∨ ) l ( ∨⇒ ) Γ ⇒ α Π , α ⇒ δ Π , α ∨ β ⇒ δ (cut) (cut) Γ , Π ⇒ δ Γ , Π ⇒ δ Corollary (Gentzen 1935) Intuitionistic propositional logic is decidable. George Metcalfe (University of Bern) Uniform Interpolation August 2018 17 / 30

  46. Craig Interpolation for Intuitionistic Logic Theorem (Schütte 1962) If α ( x , y ) and β ( y , z ) are formulas such that α ⊢ IL β , then there exists a formula γ ( y ) such that α ⊢ IL γ and γ ⊢ IL β . George Metcalfe (University of Bern) Uniform Interpolation August 2018 18 / 30

  47. Craig Interpolation for Intuitionistic Logic Theorem (Schütte 1962) If α ( x , y ) and β ( y , z ) are formulas such that α ⊢ IL β , then there exists a formula γ ( y ) such that α ⊢ IL γ and γ ⊢ IL β . Proof Idea. We prove that for any sequent Σ( x , y ) , Π( y , z ) ⇒ δ ( y , z ) , George Metcalfe (University of Bern) Uniform Interpolation August 2018 18 / 30

  48. Craig Interpolation for Intuitionistic Logic Theorem (Schütte 1962) If α ( x , y ) and β ( y , z ) are formulas such that α ⊢ IL β , then there exists a formula γ ( y ) such that α ⊢ IL γ and γ ⊢ IL β . Proof Idea. We prove that for any sequent Σ( x , y ) , Π( y , z ) ⇒ δ ( y , z ) , there exists a formula γ ( y ) such that ⊢ GIL Σ , Π ⇒ δ = ⇒ ⊢ GIL Σ ⇒ γ and ⊢ GIL Π , γ ⇒ δ, George Metcalfe (University of Bern) Uniform Interpolation August 2018 18 / 30

  49. Craig Interpolation for Intuitionistic Logic Theorem (Schütte 1962) If α ( x , y ) and β ( y , z ) are formulas such that α ⊢ IL β , then there exists a formula γ ( y ) such that α ⊢ IL γ and γ ⊢ IL β . Proof Idea. We prove that for any sequent Σ( x , y ) , Π( y , z ) ⇒ δ ( y , z ) , there exists a formula γ ( y ) such that ⊢ GIL Σ , Π ⇒ δ = ⇒ ⊢ GIL Σ ⇒ γ and ⊢ GIL Π , γ ⇒ δ, by induction on the height of a cut-free GIL-derivation of Σ , Π ⇒ δ . George Metcalfe (University of Bern) Uniform Interpolation August 2018 18 / 30

  50. Craig Interpolation for Intuitionistic Logic Theorem (Schütte 1962) If α ( x , y ) and β ( y , z ) are formulas such that α ⊢ IL β , then there exists a formula γ ( y ) such that α ⊢ IL γ and γ ⊢ IL β . Proof Idea. We prove that for any sequent Σ( x , y ) , Π( y , z ) ⇒ δ ( y , z ) , there exists a formula γ ( y ) such that ⊢ GIL Σ , Π ⇒ δ = ⇒ ⊢ GIL Σ ⇒ γ and ⊢ GIL Π , γ ⇒ δ, by induction on the height of a cut-free GIL-derivation of Σ , Π ⇒ δ . Base case. E.g., if δ ∈ Σ , let γ = δ ; George Metcalfe (University of Bern) Uniform Interpolation August 2018 18 / 30

  51. Craig Interpolation for Intuitionistic Logic Theorem (Schütte 1962) If α ( x , y ) and β ( y , z ) are formulas such that α ⊢ IL β , then there exists a formula γ ( y ) such that α ⊢ IL γ and γ ⊢ IL β . Proof Idea. We prove that for any sequent Σ( x , y ) , Π( y , z ) ⇒ δ ( y , z ) , there exists a formula γ ( y ) such that ⊢ GIL Σ , Π ⇒ δ = ⇒ ⊢ GIL Σ ⇒ γ and ⊢ GIL Π , γ ⇒ δ, by induction on the height of a cut-free GIL-derivation of Σ , Π ⇒ δ . Base case. E.g., if δ ∈ Σ , let γ = δ ; if δ ∈ Π , let γ = ⊤ . George Metcalfe (University of Bern) Uniform Interpolation August 2018 18 / 30

  52. Craig Interpolation for Intuitionistic Logic Inductive step. E.g., if Σ is Σ ′ , α → β and the derivation ends with . . . . . . Σ ′ , α → β, Π ⇒ α Σ ′ , β, Π ⇒ δ ( →⇒ ) Σ ′ , α → β, Π ⇒ δ George Metcalfe (University of Bern) Uniform Interpolation August 2018 19 / 30

  53. Craig Interpolation for Intuitionistic Logic Inductive step. E.g., if Σ is Σ ′ , α → β and the derivation ends with . . . . . . Σ ′ , α → β, Π ⇒ α Σ ′ , β, Π ⇒ δ ( →⇒ ) Σ ′ , α → β, Π ⇒ δ then by the induction hypothesis twice, there exist formulas γ 1 ( y ) , γ 2 ( y ) such that the following sequents are GIL-derivable: George Metcalfe (University of Bern) Uniform Interpolation August 2018 19 / 30

  54. Craig Interpolation for Intuitionistic Logic Inductive step. E.g., if Σ is Σ ′ , α → β and the derivation ends with . . . . . . Σ ′ , α → β, Π ⇒ α Σ ′ , β, Π ⇒ δ ( →⇒ ) Σ ′ , α → β, Π ⇒ δ then by the induction hypothesis twice, there exist formulas γ 1 ( y ) , γ 2 ( y ) such that the following sequents are GIL-derivable: Σ ′ , α → β, γ 1 ⇒ α ; Π ⇒ γ 1 ; George Metcalfe (University of Bern) Uniform Interpolation August 2018 19 / 30

  55. Craig Interpolation for Intuitionistic Logic Inductive step. E.g., if Σ is Σ ′ , α → β and the derivation ends with . . . . . . Σ ′ , α → β, Π ⇒ α Σ ′ , β, Π ⇒ δ ( →⇒ ) Σ ′ , α → β, Π ⇒ δ then by the induction hypothesis twice, there exist formulas γ 1 ( y ) , γ 2 ( y ) such that the following sequents are GIL-derivable: Σ ′ , α → β, γ 1 ⇒ α ; Σ ′ , β ⇒ γ 2 ; Π ⇒ γ 1 ; and Π , γ 2 ⇒ δ. George Metcalfe (University of Bern) Uniform Interpolation August 2018 19 / 30

  56. Craig Interpolation for Intuitionistic Logic Inductive step. E.g., if Σ is Σ ′ , α → β and the derivation ends with . . . . . . Σ ′ , α → β, Π ⇒ α Σ ′ , β, Π ⇒ δ ( →⇒ ) Σ ′ , α → β, Π ⇒ δ then by the induction hypothesis twice, there exist formulas γ 1 ( y ) , γ 2 ( y ) such that the following sequents are GIL-derivable: Σ ′ , α → β, γ 1 ⇒ α ; Σ ′ , β ⇒ γ 2 ; Π ⇒ γ 1 ; and Π , γ 2 ⇒ δ. We obtain an interpolant γ 1 → γ 2 with derivations ending with George Metcalfe (University of Bern) Uniform Interpolation August 2018 19 / 30

  57. Craig Interpolation for Intuitionistic Logic Inductive step. E.g., if Σ is Σ ′ , α → β and the derivation ends with . . . . . . Σ ′ , α → β, Π ⇒ α Σ ′ , β, Π ⇒ δ ( →⇒ ) Σ ′ , α → β, Π ⇒ δ then by the induction hypothesis twice, there exist formulas γ 1 ( y ) , γ 2 ( y ) such that the following sequents are GIL-derivable: Σ ′ , α → β, γ 1 ⇒ α ; Σ ′ , β ⇒ γ 2 ; Π ⇒ γ 1 ; and Π , γ 2 ⇒ δ. We obtain an interpolant γ 1 → γ 2 with derivations ending with . . . . . . Σ ′ , α → β, γ 1 ⇒ α Σ ′ , β, γ 1 ⇒ γ 2 ( →⇒ ) Σ ′ , α → β, γ 1 ⇒ γ 2 ( ⇒→ ) Σ ′ , α → β ⇒ γ 1 → γ 2 George Metcalfe (University of Bern) Uniform Interpolation August 2018 19 / 30

  58. Craig Interpolation for Intuitionistic Logic Inductive step. E.g., if Σ is Σ ′ , α → β and the derivation ends with . . . . . . Σ ′ , α → β, Π ⇒ α Σ ′ , β, Π ⇒ δ ( →⇒ ) Σ ′ , α → β, Π ⇒ δ then by the induction hypothesis twice, there exist formulas γ 1 ( y ) , γ 2 ( y ) such that the following sequents are GIL-derivable: Σ ′ , α → β, γ 1 ⇒ α ; Σ ′ , β ⇒ γ 2 ; Π ⇒ γ 1 ; and Π , γ 2 ⇒ δ. We obtain an interpolant γ 1 → γ 2 with derivations ending with . . . . . . . . Σ ′ , α → β, γ 1 ⇒ α Σ ′ , β, γ 1 ⇒ γ 2 . . . . ( →⇒ ) Σ ′ , α → β, γ 1 ⇒ γ 2 Π , γ 1 → γ 2 ⇒ γ 1 Π , γ 2 ⇒ δ ( ⇒→ ) ( →⇒ ) Σ ′ , α → β ⇒ γ 1 → γ 2 Π , γ 1 → γ 2 ⇒ δ George Metcalfe (University of Bern) Uniform Interpolation August 2018 19 / 30

  59. An Algebraic Consequence Corollary (Day 1972) HA admits the amalgamation property ; George Metcalfe (University of Bern) Uniform Interpolation August 2018 20 / 30

  60. An Algebraic Consequence B 1 A 1 2 B 2 Corollary (Day 1972) HA admits the amalgamation property ; that is, for any A , B 1 , B 2 ∈ HA , and embeddings σ 1 : A → B 1 , σ 2 : A → B 2 , George Metcalfe (University of Bern) Uniform Interpolation August 2018 20 / 30

  61. An Algebraic Consequence B 1 C A 1 2 B 2 Corollary (Day 1972) HA admits the amalgamation property ; that is, for any A , B 1 , B 2 ∈ HA , and embeddings σ 1 : A → B 1 , σ 2 : A → B 2 , there exist C ∈ HA George Metcalfe (University of Bern) Uniform Interpolation August 2018 20 / 30

  62. An Algebraic Consequence B 1 C A 1 ! 1 2 ! 2 B 2 Corollary (Day 1972) HA admits the amalgamation property ; that is, for any A , B 1 , B 2 ∈ HA , and embeddings σ 1 : A → B 1 , σ 2 : A → B 2 , there exist C ∈ HA and embeddings τ 1 : B 1 → C and τ 2 : B 2 → C George Metcalfe (University of Bern) Uniform Interpolation August 2018 20 / 30

  63. An Algebraic Consequence B 1 C A 1 ! 1 2 ! 2 B 2 Corollary (Day 1972) HA admits the amalgamation property ; that is, for any A , B 1 , B 2 ∈ HA , and embeddings σ 1 : A → B 1 , σ 2 : A → B 2 , there exist C ∈ HA and embeddings τ 1 : B 1 → C and τ 2 : B 2 → C such that τ 1 σ 1 = τ 2 σ 2 . George Metcalfe (University of Bern) Uniform Interpolation August 2018 20 / 30

  64. Uniform Interpolation in Intuitionistic Logic Theorem (Pitts 1992) For any formula α ( x , y ) of intuitionistic propositional logic, there exist formulas α L ( y ) and α R ( y ) A.M. Pitts. On an interpretation of second-order quantification in first-order intuitionistic propositional logic. Journal of Symbolic Logic 57 (1992), 33–52. George Metcalfe (University of Bern) Uniform Interpolation August 2018 21 / 30

  65. Uniform Interpolation in Intuitionistic Logic Theorem (Pitts 1992) For any formula α ( x , y ) of intuitionistic propositional logic, there exist formulas α L ( y ) and α R ( y ) such that for any formula β ( y , z ) , α R ( y ) ⊢ IL β ( y , z ) α ( x , y ) ⊢ IL β ( y , z ) ⇐ ⇒ A.M. Pitts. On an interpretation of second-order quantification in first-order intuitionistic propositional logic. Journal of Symbolic Logic 57 (1992), 33–52. George Metcalfe (University of Bern) Uniform Interpolation August 2018 21 / 30

  66. Uniform Interpolation in Intuitionistic Logic Theorem (Pitts 1992) For any formula α ( x , y ) of intuitionistic propositional logic, there exist formulas α L ( y ) and α R ( y ) such that for any formula β ( y , z ) , α R ( y ) ⊢ IL β ( y , z ) α ( x , y ) ⊢ IL β ( y , z ) ⇐ ⇒ β ( y , z ) ⊢ IL α L ( y ) . β ( y , z ) ⊢ IL α ( x , y ) ⇐ ⇒ A.M. Pitts. On an interpretation of second-order quantification in first-order intuitionistic propositional logic. Journal of Symbolic Logic 57 (1992), 33–52. George Metcalfe (University of Bern) Uniform Interpolation August 2018 21 / 30

  67. A Terminating Sequent Calculus We obtain a terminating sequent calculus GIL ∗ for intuitionistic logic George Metcalfe (University of Bern) Uniform Interpolation August 2018 22 / 30

  68. A Terminating Sequent Calculus We obtain a terminating sequent calculus GIL ∗ for intuitionistic logic by removing the cut rule from GIL and replacing the implication left rule Γ , α → β ⇒ α Γ , β ⇒ δ ( →⇒ ) Γ , α → β ⇒ δ George Metcalfe (University of Bern) Uniform Interpolation August 2018 22 / 30

  69. A Terminating Sequent Calculus We obtain a terminating sequent calculus GIL ∗ for intuitionistic logic by removing the cut rule from GIL and replacing the implication left rule Γ , α → β ⇒ α Γ , β ⇒ δ ( →⇒ ) Γ , α → β ⇒ δ with the decomposition rules Γ ⇒ δ Γ , ⊥ → β ⇒ δ George Metcalfe (University of Bern) Uniform Interpolation August 2018 22 / 30

  70. A Terminating Sequent Calculus We obtain a terminating sequent calculus GIL ∗ for intuitionistic logic by removing the cut rule from GIL and replacing the implication left rule Γ , α → β ⇒ α Γ , β ⇒ δ ( →⇒ ) Γ , α → β ⇒ δ with the decomposition rules Γ , x , β ⇒ δ Γ ⇒ δ Γ , ⊥ → β ⇒ δ Γ , x , x → β ⇒ δ George Metcalfe (University of Bern) Uniform Interpolation August 2018 22 / 30

  71. A Terminating Sequent Calculus We obtain a terminating sequent calculus GIL ∗ for intuitionistic logic by removing the cut rule from GIL and replacing the implication left rule Γ , α → β ⇒ α Γ , β ⇒ δ ( →⇒ ) Γ , α → β ⇒ δ with the decomposition rules Γ , α 1 → ( α 2 → β ) ⇒ δ Γ , x , β ⇒ δ Γ ⇒ δ Γ , ⊥ → β ⇒ δ Γ , x , x → β ⇒ δ Γ , ( α 1 ∧ α 2 ) → β ⇒ δ George Metcalfe (University of Bern) Uniform Interpolation August 2018 22 / 30

  72. A Terminating Sequent Calculus We obtain a terminating sequent calculus GIL ∗ for intuitionistic logic by removing the cut rule from GIL and replacing the implication left rule Γ , α → β ⇒ α Γ , β ⇒ δ ( →⇒ ) Γ , α → β ⇒ δ with the decomposition rules Γ , α 1 → ( α 2 → β ) ⇒ δ Γ , x , β ⇒ δ Γ ⇒ δ Γ , ⊥ → β ⇒ δ Γ , x , x → β ⇒ δ Γ , ( α 1 ∧ α 2 ) → β ⇒ δ Γ , β ⇒ δ Γ , ⊤ → β ⇒ δ George Metcalfe (University of Bern) Uniform Interpolation August 2018 22 / 30

  73. A Terminating Sequent Calculus We obtain a terminating sequent calculus GIL ∗ for intuitionistic logic by removing the cut rule from GIL and replacing the implication left rule Γ , α → β ⇒ α Γ , β ⇒ δ ( →⇒ ) Γ , α → β ⇒ δ with the decomposition rules Γ , α 1 → ( α 2 → β ) ⇒ δ Γ , x , β ⇒ δ Γ ⇒ δ Γ , ⊥ → β ⇒ δ Γ , x , x → β ⇒ δ Γ , ( α 1 ∧ α 2 ) → β ⇒ δ Γ , β ⇒ δ Γ , α 1 → β, α 2 → β ⇒ δ Γ , ⊤ → β ⇒ δ Γ , ( α 1 ∨ α 2 ) → β ⇒ δ George Metcalfe (University of Bern) Uniform Interpolation August 2018 22 / 30

  74. A Terminating Sequent Calculus We obtain a terminating sequent calculus GIL ∗ for intuitionistic logic by removing the cut rule from GIL and replacing the implication left rule Γ , α → β ⇒ α Γ , β ⇒ δ ( →⇒ ) Γ , α → β ⇒ δ with the decomposition rules Γ , α 1 → ( α 2 → β ) ⇒ δ Γ , x , β ⇒ δ Γ ⇒ δ Γ , ⊥ → β ⇒ δ Γ , x , x → β ⇒ δ Γ , ( α 1 ∧ α 2 ) → β ⇒ δ Γ , β ⇒ δ Γ , α 1 → β, α 2 → β ⇒ δ Γ , α 2 → β ⇒ α 1 → α 2 Γ , β ⇒ δ Γ , ⊤ → β ⇒ δ Γ , ( α 1 ∨ α 2 ) → β ⇒ δ Γ , ( α 1 → α 2 ) → β ⇒ δ George Metcalfe (University of Bern) Uniform Interpolation August 2018 22 / 30

  75. A Terminating Sequent Calculus We obtain a terminating sequent calculus GIL ∗ for intuitionistic logic by removing the cut rule from GIL and replacing the implication left rule Γ , α → β ⇒ α Γ , β ⇒ δ ( →⇒ ) Γ , α → β ⇒ δ with the decomposition rules Γ , α 1 → ( α 2 → β ) ⇒ δ Γ , x , β ⇒ δ Γ ⇒ δ Γ , ⊥ → β ⇒ δ Γ , x , x → β ⇒ δ Γ , ( α 1 ∧ α 2 ) → β ⇒ δ Γ , β ⇒ δ Γ , α 1 → β, α 2 → β ⇒ δ Γ , α 2 → β ⇒ α 1 → α 2 Γ , β ⇒ δ Γ , ⊤ → β ⇒ δ Γ , ( α 1 ∨ α 2 ) → β ⇒ δ Γ , ( α 1 → α 2 ) → β ⇒ δ Theorem (Dyckhoff 1992) A sequent is derivable in GIL ∗ if and only if it is derivable in GIL . George Metcalfe (University of Bern) Uniform Interpolation August 2018 22 / 30

  76. Weighing Formulas The weight wt ( α ) of a formula α is defined inductively by George Metcalfe (University of Bern) Uniform Interpolation August 2018 23 / 30

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend