uncountable
play

Uncountable Cantors Theorem shows how to keep finding Sets bigger - PowerPoint PPT Presentation

Mathematics for Computer Science Infinite Sizes MIT 6.042J/18.062J Are all sets the same size? NO! Uncountable Cantors Theorem shows how to keep finding Sets bigger infinities. Albert R Meyer, March 4, 2015 Albert R Meyer, March


  1. Mathematics for Computer Science Infinite Sizes MIT 6.042J/18.062J Are all sets the same size? NO! Uncountable Cantor’s Theorem shows how to keep finding Sets bigger infinities. Albert R Meyer, March 4, 2015 Albert R Meyer, March 4, 2015 Cantor.1 Cantor.2 Countable Sets Diagonal Arguments ω { } Suppose s 0 ,s 1 ,s 2 , …∈ 0,1 A is countable iff can list it: a 0 ,a 1 ,a 2 ,…. example: 0 1 2 3 . . . n n+1 . . . s 0 0 0 1 0 . . . 0 0 . . . * { } ::= {finite bit strings} 0,1 0 1 1 0 . . . 0 1 . . . s 1 1 0 0 0 . . . 1 0 . . . s 2 ω { } Claim: ::= {∞-bit strings} 0,1 1 0 1 1 . . . 1 1 . . . s 3 . . . 1 is uncountable. . . . 1 . . 0 Albert R Meyer, March 4, 2013 Cantor.4 Albert R Meyer, March 4, 2015 Cantor.3 1

  2. Diagonal Arguments Diagonal Arguments ω ω { } { } Suppose s 0 ,s 1 ,s 2 , …∈ 0,1 Suppose s 0 ,s 1 ,s 2 , …∈ 0,1 0 1 2 3 . . . n n+1 . . . 1 0 0 1 0 . . . 0 0 . . . � s 0 1 …differs from every row! 0 0 1 1 0 . . . 0 1 . . . s 1 0 ω 1 { } 1 0 1 0 0 . . . 1 0 . . . s 2 So cannot be listed: 0,1 1 0 1 0 1 . . . 1 1 . . . s 3 0 this diagonal sequence 0 . . . 1 0 will be missing 0 . . . 1 0 1 . . 0 1 Albert R Meyer, March 4, 2013 Cantor.5 Albert R Meyer, March 4, 2013 Cantor.6 ω { } Strictly Smaller 0,1 is uncountable ω ⎞ ⎛ { } ⎟ ⎜ So surj 0,1 ⎟ NOT ⎜ ⎜ N ⎟ and ⎜ ⎟ ⎝ ⎠ A strict B ::= NOT (A surj B) ω { } surj N 0,1 obviously A is “strictly smaller” than B ω { } N "strictly smaller" than 0,1 ω { } So N strict 0,1 Albert R Meyer, March 4, 2013 Cantor.8 Albert R Meyer, March 4, 2015 Cantor.9 2

  3. Cantor’s Theorem Diagonal Arguments Suppose A = {a,b,s,t, … ,d,e, … } A strict pow(A) pow(A) = {f(a),f(b),f(s), … ,f(d), … } for every set, A a b s t . . . d e . . . f(a) . (finite or infinite) f(b) . f(s) . f(t) . . Albert R Meyer, March 4, 2013 Cantor.11 Albert R Meyer, March 4, 2015 Cantor.10 Diagonal Arguments Diagonal Arguments Suppose A Suppose A = {a,b,s,t, … ,d,e, … } = {a,b,s,t, … ,d,e, … } pow(A) = {f(a),f(b),f(s), … ,f(d), … } pow(A) = {f(a),f(b),f(s), … ,f(d), … } a b s t c . . d e . . . a b s t c . . d e . . . f(a) a s t e . f(a) a a s t e . f(b) a b c d . f(b) a b b c d . f(s) b t . f(s) b t . s f(t) s t c d . f(t) s t t c d . f(c) b s d e f(c) b s d e c . . . . . . Albert R Meyer, March 4, 2013 Albert R Meyer, March 4, 2013 Cantor.12 Cantor.13 3

  4. A strict Pow(A) Diagonal Arguments Suppose A = {a,b,s,t, … ,d,e, … } Pf: say have fcn f:A � pow(A). pow(A) = {f(a),f(b),f(s), … ,f(d), … } Define a subset of A that is not in D a b s t c . . d e . . . the range of f: namely f(a) s s t t e . f(b) a a c c d . D::= {a ∈ A | a ∉ f(a)} f(s) b b s s t t . f(t) s s c c d . ∉ range(f) D Now since it differs f(c) b b s s c c d e from set f(a) at element a! . . . . . Albert R Meyer, March 4, 2013 Cantor.14 Albert R Meyer, March 4, 2015 Cantor.15 str ict pow( N ) N A strict Pow(A) So no f-arrow into D. That is, f is not a surjection. pow( N ) is uncountable QED Albert R Meyer, March 4, 2015 Albert R Meyer, March 4, 2015 Cantor.21 Cantor.22 4

  5. {0,1} ω again Proving Uncountability Lemma: If A is uncountable We know {0,1} ω bij pow( N ) and C surj A then C is uncountable pow( N ) and uncountable by Cantor, Albert R Meyer, March 4, 2015 Albert R Meyer, March 4, 2015 Cantor.24 Cantor.26 {0,1} ω again Real Numbers Uncountable ω { } R surj 0,1 We know {0,1} ω bij pow( N ) map ± r to binary rep 3 1/3 = 111.010101… pow( N ) and uncountable by maps to 111010101… Cantor, so {0,1} ω uncountable. Albert R Meyer, March 4, 2015 Albert R Meyer, March 4, 2015 Cantor.27 Cantor.28 5

  6. Real Numbers Uncountable ω { } R surj 0,1 map ± r to binary rep 1/2 = .100000… 1/2 maps to 100000… � = .0111111… -1/2 maps to 0111111… � Albert R Meyer, March 4, 2015 Cantor.29 6

  7. MIT OpenCourseWare http://ocw.mit.edu 6.042J / 18.062J Mathematics for Computer Science Spring 20 15 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend