ultraproducts qwep von neumann algebras and effros mar
play

Ultraproducts, QWEP von Neumann Algebras, and Effros-Mar echal - PowerPoint PPT Presentation

. Ultraproducts, QWEP von Neumann Algebras, and Effros-Mar echal Topology . Hiroshi ANDO Erwin Schr odinger Institute, Vienna ENS Lyon, 27.9.2013 Joint work with Uffe Haagerup and Carl Winslw (University of Copenhagen) . . . . .


  1. . Ultraproducts, QWEP von Neumann Algebras, and Effros-Mar´ echal Topology . Hiroshi ANDO Erwin Schr¨ odinger Institute, Vienna ENS Lyon, 27.9.2013 Joint work with Uffe Haagerup and Carl Winsløw (University of Copenhagen) . . . . . . Hiroshi ANDO (Erwin Schr¨ odinger Institute, Vienna) Ultraproducts, QWEP von Neumann Algebras, and Effros-Mar´ ENS Lyon, 27.9.2013 echal Topology 1 / 24

  2. Outline of Talk . . Kirchberg’s QWEP Conjecture 1 . . Effros-Mar´ echal Topology 2 . . Ultraproduct of von Neumann algebras 3 . . Characterizations of QWEP von Neumann Algebras 4 H. Ando, U. Haagerup, “Ultraproucts of von Neumann algebras”, arXiv:1212.5457 H. Ando, U. Haagerup, C. Winsløw, “Ultraproducts, QWEP von Neumann algebras, and the Effros-Mar´ echal topology”, arXiv:1306.0460 . . . . . . Hiroshi ANDO (Erwin Schr¨ odinger Institute, Vienna) Ultraproducts, QWEP von Neumann Algebras, and Effros-Mar´ ENS Lyon, 27.9.2013 echal Topology 2 / 24

  3. QWEP Conjecture Kirchberg (’93) revealed remarkable connetions among Tensor products of C ∗ -algebras Lance’s Weak Expectation Property (WEP) Connes’s Embedding Conjecture (CEC): ∀ N sep. II 1 factor embeds into R ω ? . . . . . . Hiroshi ANDO (Erwin Schr¨ odinger Institute, Vienna) Ultraproducts, QWEP von Neumann Algebras, and Effros-Mar´ ENS Lyon, 27.9.2013 echal Topology 3 / 24

  4. QWEP Conjecture Kirchberg (’93) revealed remarkable connetions among Tensor products of C ∗ -algebras Lance’s Weak Expectation Property (WEP) Connes’s Embedding Conjecture (CEC): ∀ N sep. II 1 factor embeds into R ω ? In this talk, we discuss how QWEP property is connected to ultraproducts of von Neumann algebras using topological method. . . . . . . Hiroshi ANDO (Erwin Schr¨ odinger Institute, Vienna) Ultraproducts, QWEP von Neumann Algebras, and Effros-Mar´ ENS Lyon, 27.9.2013 echal Topology 3 / 24

  5. . . . QWEP Conjecture . Definition (Lance ’73, Kirchberg ’93) . (1) C ∗ -alg A has the weak expectation property (WEP) if for any faithful representation A ⊂ B ( H ) , there is a ucp map Φ: B ( H ) → A ∗∗ s.t. Φ | A = id A . (2) C ∗ -alg A has the quotient weak expectation property (QWEP) if it is the quotient of a C ∗ -algebra with WEP. . . . . . . . Hiroshi ANDO (Erwin Schr¨ odinger Institute, Vienna) Ultraproducts, QWEP von Neumann Algebras, and Effros-Mar´ ENS Lyon, 27.9.2013 echal Topology 4 / 24

  6. QWEP Conjecture . Definition (Lance ’73, Kirchberg ’93) . (1) C ∗ -alg A has the weak expectation property (WEP) if for any faithful representation A ⊂ B ( H ) , there is a ucp map Φ: B ( H ) → A ∗∗ s.t. Φ | A = id A . (2) C ∗ -alg A has the quotient weak expectation property (QWEP) if it is the quotient of a C ∗ -algebra with WEP. . . Theorem (Kirchberg’s QWEP Conjecture) . TFAE. (1) C ∗ ( F ∞ ) ⊗ min C ∗ ( F ∞ ) = C ∗ ( F ∞ ) ⊗ max C ∗ ( F ∞ ) . (2) Every C ∗ -algebra has QWEP. (3) C ∗ ( F ∞ ) has WEP. (4) (Connes’s Embedding Conjecture) Every separable type II 1 factor M admits an embedding into R ω , where R is the hyperfinite II 1 factor. . . . . . . . Hiroshi ANDO (Erwin Schr¨ odinger Institute, Vienna) Ultraproducts, QWEP von Neumann Algebras, and Effros-Mar´ ENS Lyon, 27.9.2013 echal Topology 4 / 24

  7. . . . . Theorem (Kirchberg ’93) . A separable II 1 factor M embeds into R ω if and only if M has QWEP. . . . . . . . Hiroshi ANDO (Erwin Schr¨ odinger Institute, Vienna) Ultraproducts, QWEP von Neumann Algebras, and Effros-Mar´ ENS Lyon, 27.9.2013 echal Topology 5 / 24

  8. . . . . Theorem (Kirchberg ’93) . A separable II 1 factor M embeds into R ω if and only if M has QWEP. . Is QWEP conjecture true? ? C ∗ ( F ∞ ) ⊗ min C ∗ ( F ∞ ) = C ∗ ( F ∞ ) ⊗ max C ∗ ( F ∞ ) Kirchberg(’93) proved C ∗ ( F ∞ ) ⊗ min B ( ℓ 2 ) = C ∗ ( F ∞ ) ⊗ max B ( ℓ 2 ) . . . . . . . Hiroshi ANDO (Erwin Schr¨ odinger Institute, Vienna) Ultraproducts, QWEP von Neumann Algebras, and Effros-Mar´ ENS Lyon, 27.9.2013 echal Topology 5 / 24

  9. . Theorem (Kirchberg ’93) . A separable II 1 factor M embeds into R ω if and only if M has QWEP. . Is QWEP conjecture true? ? C ∗ ( F ∞ ) ⊗ min C ∗ ( F ∞ ) = C ∗ ( F ∞ ) ⊗ max C ∗ ( F ∞ ) Kirchberg(’93) proved C ∗ ( F ∞ ) ⊗ min B ( ℓ 2 ) = C ∗ ( F ∞ ) ⊗ max B ( ℓ 2 ) . . Theorem (Junge-Pisier ’95) . B ( ℓ 2 ) ⊗ min B ( ℓ 2 ) ̸ = B ( ℓ 2 ) ⊗ max B ( ℓ 2 ) . . . . . . . . Hiroshi ANDO (Erwin Schr¨ odinger Institute, Vienna) Ultraproducts, QWEP von Neumann Algebras, and Effros-Mar´ ENS Lyon, 27.9.2013 echal Topology 5 / 24

  10. . . . Effros-Mar´ echal Topology Fix H ∼ = ℓ 2 . vN ( H ) =set of all vNas on H . . . . . . . Hiroshi ANDO (Erwin Schr¨ odinger Institute, Vienna) Ultraproducts, QWEP von Neumann Algebras, and Effros-Mar´ ENS Lyon, 27.9.2013 echal Topology 6 / 24

  11. . . . Effros-Mar´ echal Topology Fix H ∼ = ℓ 2 . vN ( H ) =set of all vNas on H . Effros (’65) introduced Effros Borel structure on vN ( H ) . Mar´ echal (’73) introduced Polish topology on vN ( H ) that generates Effros Borel structure. Haagerup-Winsløw (’98,’00) studied the Effros-Mar´ echal topology. . . . . . . Hiroshi ANDO (Erwin Schr¨ odinger Institute, Vienna) Ultraproducts, QWEP von Neumann Algebras, and Effros-Mar´ ENS Lyon, 27.9.2013 echal Topology 6 / 24

  12. Effros-Mar´ echal Topology Fix H ∼ = ℓ 2 . vN ( H ) =set of all vNas on H . Effros (’65) introduced Effros Borel structure on vN ( H ) . Mar´ echal (’73) introduced Polish topology on vN ( H ) that generates Effros Borel structure. Haagerup-Winsløw (’98,’00) studied the Effros-Mar´ echal topology. . Definition (Mar´ echal ’73) . The Effros-Mar´ echal Topology on vN ( H ) is the weakest topology which makes all the maps of the form vN ( H ) ∋ M �→ ∥ φ | M ∥ , φ ∈ B ( H ) ∗ continuous. . . . . . . . Hiroshi ANDO (Erwin Schr¨ odinger Institute, Vienna) Ultraproducts, QWEP von Neumann Algebras, and Effros-Mar´ ENS Lyon, 27.9.2013 echal Topology 6 / 24

  13. . . . . Definition (Haagerup-Winsløw ’98) . For { M n } ∞ n =1 ⊂ vN ( H ) , define lim sup n →∞ M n and lim inf n →∞ M n by so ∗ → x, ∃ ( x n ) n ∈ ℓ ∞ ( N , M n ) } . n →∞ M n = { x ∈ B ( H ); x n (1) lim inf . . . . . . . Hiroshi ANDO (Erwin Schr¨ odinger Institute, Vienna) Ultraproducts, QWEP von Neumann Algebras, and Effros-Mar´ ENS Lyon, 27.9.2013 echal Topology 7 / 24

  14. . . . . Definition (Haagerup-Winsløw ’98) . For { M n } ∞ n =1 ⊂ vN ( H ) , define lim sup n →∞ M n and lim inf n →∞ M n by so ∗ → x, ∃ ( x n ) n ∈ ℓ ∞ ( N , M n ) } . n →∞ M n = { x ∈ B ( H ); x n (1) lim inf (2) lim sup n →∞ M n =vNa generated by { x ∈ B ( H ); x is a weak-limit point of ∃ ( x n ) n ∈ ℓ ∞ ( N , M n ) } . . . . . . . . Hiroshi ANDO (Erwin Schr¨ odinger Institute, Vienna) Ultraproducts, QWEP von Neumann Algebras, and Effros-Mar´ ENS Lyon, 27.9.2013 echal Topology 7 / 24

  15. . Definition (Haagerup-Winsløw ’98) . For { M n } ∞ n =1 ⊂ vN ( H ) , define lim sup n →∞ M n and lim inf n →∞ M n by so ∗ → x, ∃ ( x n ) n ∈ ℓ ∞ ( N , M n ) } . n →∞ M n = { x ∈ B ( H ); x n (1) lim inf (2) lim sup n →∞ M n =vNa generated by { x ∈ B ( H ); x is a weak-limit point of ∃ ( x n ) n ∈ ℓ ∞ ( N , M n ) } . . . Theorem (Haagerup-Winsløw ’98) . TFAE. (1) M n → M in vN ( H ) . (2) lim inf n →∞ M n = M = lim sup n →∞ M n . ( ) ′ n →∞ M ′ Moreover, lim sup n →∞ M n = lim inf n holds. . . . . . . . Hiroshi ANDO (Erwin Schr¨ odinger Institute, Vienna) Ultraproducts, QWEP von Neumann Algebras, and Effros-Mar´ ENS Lyon, 27.9.2013 echal Topology 7 / 24

  16. . . . Important subsets of vN ( H ) : F : factors, F inj injective factors, vN ( H ) st standardly acting vNas, F II 1 type II 1 factors, etc. . . . . . . Hiroshi ANDO (Erwin Schr¨ odinger Institute, Vienna) Ultraproducts, QWEP von Neumann Algebras, and Effros-Mar´ ENS Lyon, 27.9.2013 echal Topology 8 / 24

  17. Important subsets of vN ( H ) : F : factors, F inj injective factors, vN ( H ) st standardly acting vNas, F II 1 type II 1 factors, etc. . Theorem (Haagerup-Winsløw ’00) . Subset of vN ( H ) Dense in vN ( H ) ? G δ ? F Yes Yes ∪ n ≤ n 0 F I n , n 0 ∈ N No Yes (closed) F I fin * No (but F σ ) F I ∞ * No (but F σ ) F II 1 Yes No F II ∞ Yes No F III 0 Yes No F III λ , λ ∈ (0 , 1) Yes No F III 1 Yes Yes F inj * Yes F st Yes Yes . . . . . . . Hiroshi ANDO (Erwin Schr¨ odinger Institute, Vienna) Ultraproducts, QWEP von Neumann Algebras, and Effros-Mar´ ENS Lyon, 27.9.2013 echal Topology 8 / 24

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend