u lim u dt averaging i i averaging i t
play

= u lim u dt Averaging i i Averaging i = - PowerPoint PPT Presentation

Outline Outline Reynolds Equation Reynolds Equation Eddy Viscosity Models Eddy Viscosity Models Mixing Length Model Mixing Length Model Near Wall Flows Near Wall Flows ME 639-Turbulence ME 639-Turbulence


  1. Outline Outline � Reynolds Equation � Reynolds Equation � Eddy Viscosity Models Eddy Viscosity Models � � Mixing Length Model Mixing Length Model � � Near Wall Flows � Near Wall Flows ME 639-Turbulence ME 639-Turbulence G. Ahmadi G. Ahmadi Navier Navier- -Stokes Stokes + t T Time Time 1 ∫ = u lim u dt ∂ Averaging i i ⎛ ⎞ Averaging → ∞ ∂ ∂ ∂ ∂ i = T u T 2 u u p u ⎜ ⎟ ρ + = − + µ t 0 i i i u 0 ⎜ ⎟ ∂ ∂ ∂ ∂ ∂ ∂ j x ⎝ t x ⎠ x x x j i j j i +∞ Ensemble Ensemble ∫ < >= u d u Turbulence u u f ( ) Turbulence Averaging i i Averaging − ∞ ′ = + u U u ′ U = u i = u 0 i i =< >= Ergodicity Ergodicity u u U ′ = + ′ p = i i i P = p P p 0 p ME 639-Turbulence ME 639-Turbulence G. Ahmadi G. Ahmadi 1

  2. Reynolds Equation Reynolds Equation Properties ′ Properties u i = p = 0 ' 0 ⎛ ⎞ ∂ ′ ′ ∂ ∂ ∂ ∂ 2 u u U U P U ⎜ ⎟ ρ + = − + µ − ρ i j i i i U ⎜ ⎟ ∂ ∂ ∂ ∂ ∂ ∂ j t x x x x x ⎝ ⎠ ′ ′ ′ ′ ′ ′ ≠ ≠ i ≠ j i j j j u u u 0 u u 0 p ' u 0 i j k i j ∂ i = U 0 ∂ x i ′ ∂ i = u Turbulence ′ ′ Turbulence = = ′ ′ τ = − ρ = τ T T U u U u 0 0 u u ∂ i j i j Stress Stress ij i j ji x j ME 639-Turbulence ME 639-Turbulence G. Ahmadi G. Ahmadi Reynolds Equation Boussineq Eddy Viscosity Model Eddy Viscosity Model Reynolds Equation Boussineq ⎛ ⎞ ⎛ ⎞ ⎡ ⎤ ∂ ∂ ρ ′ ′ ∂ ∂ ∂ ∂ ∂ U U U U U u u U ⎜ ⎟ ′ ′ ⎜ ⎟ ρ + = − δ + µ + − ρ ⎢ j ⎥ τ = − δ + µ + i i i U P ( ) u u T j k k i ⎜ ⎟ ∂ ∂ ∂ ∂ ∂ ⎜ ⎟ j ij i j ⎢ ⎥ t x x x x ⎝ ⎠ ⎣ ⎦ ∂ ∂ ij ij T 3 x x j j j i ⎝ ⎠ j i Turbulence Turbulence ⎛ ⎞ Eddy Eddy ′ ′ ′ ′ ′ − ρ − ρ − ρ 2 u u v u w ⎜ ⎟ µ = ρν Stress Stress Viscosity Viscosity ⎜ ⎟ T T = − ρ ′ ′ − ρ ′ − ρ ′ ′ τ T 2 u v v v w ⎜ ⎟ Reynolds Reynolds ⎜ ′ ′ ′ ′ ′ ⎟ − ρ − ρ − ρ ∂ 2 u w v w w U ⎝ ⎠ τ = τ = ρν Stress Stress T T ∂ 12 T y ME 639-Turbulence ME 639-Turbulence G. Ahmadi G. Ahmadi 2

  3. y Inertial Prandtl Assumption Prandtl Assumption Inertial Shear Velocity Shear Velocity Sublayer Sublayer U 1 1 τ dU ′ ′ Inertial Inertial 2 2 l 2 2 = ( u ) ~ ( v ) ~ * 0 l u dy Sublayer ρ Sublayer Turbulence Turbulence l y ′ ′ τ = − ρ T u v Scales Scales Ludwig Prandtl Ludwig Prandtl τ Mixing Mixing ∂ ∂ = κ U U l τ = ρ y T 2 Length l o Length ∂ y dy dU von von Eddy Eddy dy κ = von Karman Karman von = κ l ∂ 0 . 4 U Karman Karman 2 υ = d U Viscosity Viscosity l 2 constant constant ∂ T 2 von Karman von Karman y dy ME 639-Turbulence ME 639-Turbulence G. Ahmadi G. Ahmadi Turbulent Stress=Wall Shear Stress Turbulent Stress=Wall Shear Stress < + ≤ Turbulent stress is negligible Turbulent stress is negligible 0 y 5 2 * ⎛ ∂ ⎞ dU u dU U = τ = µ τ = ρκ ⎜ ⎟ 2 2 y ⎜ ⎟ κ ∂ 0 0 ⎝ ⎠ dy y dy y dU U 1 2 = ν = + = + * u U ln y c κ * dy u B ≈ + = y * 5 u y Wall Wall + = 1 + + y + = + + dU U ln y B ν U = Units Units 1 κ + dy + < ≤ 30 y 300 ME 639-Turbulence ME 639-Turbulence G. Ahmadi G. Ahmadi 3

  4. 30 + U 20 + + = + U 2 . 5 ln y 5 . 5 10 + = y + U + y 12 30 300 ME 639-Turbulence ME 639-Turbulence G. Ahmadi G. Ahmadi Concluding Remarks Concluding Remarks � Reynolds Equation Reynolds Equation � � Eddy Viscosity Models � Eddy Viscosity Models � Mixing Length Model Mixing Length Model � � Near Wall Flows Near Wall Flows � ME 639-Turbulence G. Ahmadi 4

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend