two topics of scale invariant extensions of the sm
play

Two topics of scale invariant extensions of the SM Pyungwon Ko - PowerPoint PPT Presentation

Two topics of scale invariant extensions of the SM Pyungwon Ko (KIAS) SCGT 2014 Mini, KMI, Nagoya U March 5-7 (2014) 14 3 7 Contents Scale invariant extensions of the SM with strongly interacting hidden sector : EWSB


  1. Two topics of scale invariant extensions of the SM Pyungwon Ko (KIAS) SCGT 2014 Mini, KMI, Nagoya U March 5-7 (2014) 14 년 3 월 7 일 금요일

  2. Contents • Scale invariant extensions of the SM with strongly interacting hidden sector : EWSB and CDM from h-QCD (hidden sector TC) • Dilaton (radion in RS I scenario) couplings to the SM fields : SU(3) C x SU(2) L x U(1) Y vs. SU(3) C x U(1) em 14 년 3 월 7 일 금요일

  3. Based on • hep-ph/0709.1218 (PLB),0801.4284(IJMPA), 1012.0103(ICHEP),1103.2571(PRL), and a number of proceedings during 2007-2012 (with T.Hur, D.W.Jung, J.Y.Lee) • arXiv:1402.2115 [hep-ph] (with D.W.Jung) 14 년 3 월 7 일 금요일

  4. SM Chapter is being closed • SM has been tested at quantum level ! • EWPT favors light Higgs boson ! • CKM paradigm is working very well so far ! • LHC found a SM-Higgs like boson around 125 GeV ! • No smoking gun for new physics at LHC so far 14 년 3 월 7 일 금요일

  5. SM Lagrangian L MSM = − 1 1 Tr G µ ν G µ ν − 2 g 2 Tr W µ ν W µ ν 2 g 2 s − 1 θ 4 g ′ 2 B µ ν B µ ν + i G µ ν + M 2 16 π 2 Tr G µ ν ˜ Pl R + | D µ H | 2 + ¯ Q i i ̸ DQ i + ¯ U i i ̸ DU i + ¯ D i i ̸ DD i � 2 H † H − v 2 � E i i ̸ DE i − λ +¯ L i i ̸ DL i + ¯ 2 2 � � u Q i U j ˜ H + h ij d Q i D j H + h ij h ij − l L i E j H + c.c. . (1) Based on local gauge principle ! 3 14 년 3 월 7 일 금요일

  6. EWPT & CKM |O meas − O fit |/ σ meas Measurement Fit 0 1 2 3 Δα (5) Δα had (m Z ) 0.02758 ± 0.00035 0.02766 m Z [ GeV ] m Z [ GeV ] 91.1875 ± 0.0021 91.1874 Γ Z [ GeV ] Γ Z [ GeV ] 2.4952 ± 0.0023 2.4957 σ 0 σ had [ nb ] 41.540 ± 0.037 41.477 R l R l 20.767 ± 0.025 20.744 A 0,l A fb 0.01714 ± 0.00095 0.01640 A l (P τ ) A l (P τ ) 0.1465 ± 0.0032 0.1479 R b R b 0.21629 ± 0.00066 0.21585 R c R c 0.1721 ± 0.0030 0.1722 A 0,b A fb 0.0992 ± 0.0016 0.1037 A 0,c A fb 0.0707 ± 0.0035 0.0741 A b A b 0.923 ± 0.020 0.935 A c A c 0.670 ± 0.027 0.668 A l (SLD) A l (SLD) 0.1513 ± 0.0021 0.1479 sin 2 θ lept (Q fb ) sin 2 θ eff 0.2324 ± 0.0012 0.2314 m W [ GeV ] m W [ GeV ] 80.392 ± 0.029 80.371 Γ W [ GeV ] Γ W [ GeV ] 2.147 ± 0.060 2.091 m t [ GeV ] m t [ GeV ] 171.4 ± 2.1 171.7 0 1 2 3 ε Almost Perfect ! 14 년 3 월 7 일 금요일

  7. Updates@LHCP Signal Strengths σ · Br µ ≡ σ SM · Br SM ATLAS CMS Decay Mode ( M H = 125 . 5 GeV) ( M H = 125 . 7 GeV) H → bb − 0 . 4 ± 1 . 0 1 . 15 ± 0 . 62 H → ττ 0 . 8 ± 0 . 7 1 . 10 ± 0 . 41 ⟨ µ ⟩ = 0 . 96 ± 0 . 12 H → γγ 1 . 6 ± 0 . 3 0 . 77 ± 0 . 27 H → WW ∗ 1 . 0 ± 0 . 3 0 . 68 ± 0 . 20 H → ZZ ∗ 1 . 5 ± 0 . 4 0 . 92 ± 0 . 28 1 . 30 ± 0 . 20 0 . 80 ± 0 . 14 Combined Higgs Physics A. Pich – LHCP 2013 9 14 년 3 월 7 일 금요일

  8. w/ S.H.Jung, S. Choi, JHEP (2013) NP to a singlet scalar arXiv:1307.3948 SM Mixing anlge NP to the SM Higgs Considered by the usual approaches based on effective Lagrangian 14 년 3 월 7 일 금요일

  9. SM Higgs ( ◆ 2 ) ( ◆ 2 ) ✓ h ✓ h X v + 1 m f h h µ W − µ � v h ¯ 0 0 m 2 W W + m 2 Z Z µ Z µ � L h , int = ff � 2 b W v + b b f b Z 2 b W Z v v f ( ◆ 2 ) ( ◆ 2 ) ✓ h ✓ h h v + 1 h v + 1 F µ ν F µ ν + α s + α 0 0 16 π r g G a µ ν G aµ ν 8 π r γ b γ 2 b b g 2 b sm sm g γ v v ( ◆ 2 ) ( ◆ 2 ) ✓ h ✓ h h h + α 2 µ ν W − µ ν + α 2 W + Z µ ν Z µ ν 2 b dW v + b dW 0 2 b dZ v + b dZ 0 v v π π ( ◆ 2 ) ( ◆ 2 ) ✓ h ✓ h h h µ ν ^ + α 2 W − µ ν + α 2 2 g v + g 2 f v + g Z µ ν g W + Z µ ν b dW b dW 0 b dZ b dZ 0 v v π π ( ◆ 2 ) ✓ h h + α F µ ν Z µ ν 2 b Z γ v + b Z γ 0 (2.1) v π Singlet Scalar S ⇢ ⌘ 2 � ⇢ ⌘ 2 � ⇣ s ⇣ s X v + 1 m f s s v s ¯ 0 0 m 2 W W + µ W − µ − m 2 Z Z µ Z µ − L s , int = 2 c W v + c c f ff − c Z 2 c W Z v v f ⇢ ⌘ 2 � ⇢ ⌘ 2 � ⇣ s ⇣ s v + 1 v + 1 s s F µ ν F µ ν + α s + α 0 0 16 π r g G a µ ν G aµ ν (2.10) 8 π r γ c γ 2 c c g 2 c g sm sm γ v v ⇢ ⌘ 2 � ⇢ ⌘ 2 � ⇣ s ⇣ s s s µ ν W − µ ν + α 2 + α 2 Z µ ν Z µ ν W + 2 c dW v + c dW 0 2 c dZ v + c dZ 0 v v π π ⇢ ⌘ 2 � ⇢ ⌘ 2 � ⇣ s ⇣ s s s µ ν ^ + α 2 W − µ ν + α 2 Z µ ν g W + Z µ ν 2 g v + g 2 f v + g c dW c dW 0 c dZ c dZ 0 v v π π ⇢ ⌘ 2 � ⇣ s s + α F µ ν Z µ ν 2 c Z γ v + c Z γ 0 − L nonSM (2.11) v π 14 년 3 월 7 일 금요일

  10. Mixing with a singlet scalar H 1 = h cos α � s sin α H 2 = h sin α + s cos α M ( H 1 F ) = M ( hF ) SM × ( b F cos α − c F sin α ) ≡ κ 1 F M ( hF ) SM M ( H 2 F ) = M ( hF ) SM × ( − b F sin α + c F cos α ) ≡ κ 2 F M ( hF ) SM Model Nonzero c ’s Pure Singlet Extension c h 2 Hidden Sector DM c χ Dilaton c h 2 , c g , c W , c Z , c γ Vectorlike Quarks c g , c γ Vectorlike Leptons c γ New Charged Vector bosons c γ Other c’s are all zeros ! 14 년 3 월 7 일 금요일

  11. SM gives the best fit both CMS ATLAS χ 2 / ν = 12 . 01 / 10 = 1 . 20 SM 2 . 33 / 5 = 0 . 466 9 . 69 / 5 = 1 . 94 ( ∆ b γ ) (0.090) (-0.117) (0.28) 11.19/9=1.24 1.71/4=0.428 4.99/4=1.25 ( ∆ b g , ∆ b γ ) (-0.018, 0.107) (-0.078, -0.048) (0.11, 0.17) 11.13/8 = 1.39 0.859/3 = 0.286 4.14/3 = 1.38 ( b V , b f ) ( 1 . 031 , 0 . 962 ) ( 0 . 898 , 1 . 021 ) ( 1 . 345 , 0 . 808 ) 11 . 74 / 8 = 1 . 47 0.808/3=0.27 4.52/3=1.51 ( b V ≤ 1 , b u , b d ) ( 1 . 0 , 0 . 969 , 0 . 938 ) 2HDMs (MSSM) 11 . 86 / 7 = 1 . 69 ( ∆ b g , ∆ b γ , b V , b f ) ( 0 . 041 , 0 . 117 , 0 . 941 , 0 . 961 ) 11.07/6 = 1.85 Table 5 . Best-fit results using b i only from both CMS and ATLAS data as well as individual. Errors are shown in text. 14 년 3 월 7 일 금요일

  12. SM gives the best fit � 2 / ⌫ Models Best-fit results SM 12 . 01 / 10 = 1 . 20 universal modification  2 (ˆ univ ) (1 . 012) 11 . 96 / 9 = 1 . 33 ( BR nonSM ) ≤ 18 . 8% at 95%CL (cos ↵ ) ≥ 0 . 904 at 95%CL VL lepton, W 0 , S 0 ( c α , c γ ) (0.98, -0.55) 11 . 1 / 8 = 1 . 39 VL quark ( c α , c g , c γ ) (0.947, -0.128, -0.313) 11 . 1 / 7 = 1 . 58 ( c α , c γ , Br nonSM ) BR nonSM ≤ 24% at 95%CL 11 . 1 / 8 = 1 . 39 ( c α , c g , c γ , Br nonSM ) BR nonSM ≤ 39% at 95%CL 11 . 1 / 7 = 1 . 58 singlet mixed-in ˆ   2  2  2 (ˆ g , ˆ γ , ˆ mix ) (1.03, 1.15, 0.942) 11 . 1 / 7 = 1 . 58 singlet mixed-in theory (ˆ c g , ˆ c γ , ˆ c α ) (-0.176, -0.432, 0.971) 11 . 1 / 7 = 1 . 58 Table 7 . Summary of best-fit results with scalar mixing. If BR nonSM is included in fit, no unique solution is found, and its upper bound at 95%CL is presented. Only central values of best-fit are shown, and errors can be found in text. 14 년 3 월 7 일 금요일

  13. 14 년 3 월 7 일 금요일

  14. Aspen this March 14 년 3 월 7 일 금요일

  15. • Dark & visible matter and dark energy, neutrinos observation expectation v ∝ r − 1 / 2 Strong gravitational lensing in Abell 1689 Jan Oort ( 1932 ) , Fritz Zwicky ( 1933 ) Bullet cluster Heights of peaks " ⇒ Ω b , Ω DM Ω b ' 0 . 048 Ω DM ' 0 . 259 Ω Λ ' 0 . 691 (Planck+WP+highL+BAO) ! 8 14 년 3 월 7 일 금요일

  16. Inflation models in light of Planck2013 data V ∝ φ 4 [Planck2013 results] ! 9 14 년 3 월 7 일 금요일

  17. Only Higgs (~SM) & Nothing Else So Far 14 년 3 월 7 일 금요일

  18. Motivations for BSM • Neutrino masses and mixings Leptogenesis • Baryogenesis • Inflation (inflaton) Starobinsky & Higgs Inflations • Nonbaryonic DM Many candidates • Origin of EWSB and Cosmological Const ? Can we attack these problems ? 14 년 3 월 7 일 금요일

  19. Building Blocks of SM • Lorentz/Poincare Symmetry ! • Local Gauge Symmetry : Gauge Group + Matter Representations from Experiments ! • Higgs mechanism for masses of weak gauge bosons and SM chiral fermions ! • These principles lead to unsurpassed success of the SM in particle physics 14 년 3 월 7 일 금요일

  20. Lessons for Model Building • Specify local gauge sym, matter contents and their representations under local gauge group ! • Write down all the operators upto dim-4 ! • Check anomaly cancellation ! • Consider accidental global symmetries ! • Look for nonrenormalizable operators that break/conserve the accidental symmetries of the model 14 년 3 월 7 일 금요일

  21. • If there are spin-1 particles, extra care should be paid : need an agency which provides mass to the spin-1 object ! • Check if you can write Yukawa couplings to the observed fermion ! • One may have to introduce additional Higgs doublets with new gauge interaction if you consider new chiral gauge symmetry (Ko, Omura, Yu on chiral U(1)’ model for top FB asymmetry) ! • Impose various constraints and study phenomenology 14 년 3 월 7 일 금요일

  22. (3,2,1) or SU(3) c XU(1) em ? • Well below the EW sym breaking scale, it may be fine to impose SU(3)c X U(1)em ! • At EW scale, better to impose (3,2,1) which gives better description in general after all ! • Majorana neutrino mass is a good example ! • For example, in the Higgs + dilaton (radion) system, and you get different results (work in preparation with D.W.Jung) ! • Singlet mixing with SM Higgs 14 년 3 월 7 일 금요일

  23. Digression on Higgs- dilaton system arXiv:1402.2115 [hep-ph] 14 년 3 월 7 일 금요일

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend