turbulence simulations with
play

Turbulence Simulations with Real Mass Ratio and Value S. Maeyama, - PowerPoint PPT Presentation

TH/1-1 Multi-Scale ITG/TEM/ETG Turbulence Simulations with Real Mass Ratio and Value S. Maeyama, Y. Idomura, M. Nakata, M. Yagi, N. Miyato Japan Atomic Energy Agency Collaborators T.-H. Watanabe (Nagoya Univ.), M. Nunami, A. Ishizawa


  1. TH/1-1 Multi-Scale ITG/TEM/ETG Turbulence Simulations with Real Mass Ratio and β Value S. Maeyama, Y. Idomura, M. Nakata, M. Yagi, N. Miyato Japan Atomic Energy Agency Collaborators : T.-H. Watanabe (Nagoya Univ.), M. Nunami, A. Ishizawa (NIFS) 25th IAEA FEC, 15 Oct. 2014 This work is supported by HPCI Strategic Program Field No. 4 and MEXT KAKENHI Grant No. 26800283.

  2. Introduction One of the critical issues in ITER is electron heat transport, which is inherently multi-scale physics. “Streamers” in ETG turbulence 2000 [Jenko00PoP] direction A candidate is electron Poloidal temperature gradient modes ( ETG ). Radial direction 2007 [Candy07PPCF,Waltz08PoP,Görler08PRL] ETGs give small transport if there are ion temperature gradient and trapped electron modes ( ITG/TEM ). However, these multi-scale simulations were limited: • Reduced mass ratio (m i /m e =400, 900) • Electrostatic approximation ( β =0) 2

  3. Motivation & Outline Following points are not Linear instabilities from yet clarified: electron to ion scales (i) Are there multi-scale Scale separation with real mass ratio interactions even with Linear growth rate γ R/v ti the real mass ratio 10 and β value? Ion-scale stabilization 1 with real β β =0.04% (ii) If yes, how do the 0.1 β =2.0% interactions occur? 0.1 1 10 Poloidal wave number k y ρ ti 3

  4. Motivation & Outline Following points are not Linear instabilities from yet clarified: electron to ion scales (i) Are there multi-scale Scale separation with real mass ratio interactions even with Linear growth rate γ R/v ti the real mass ratio 10 and β value?  Multi-scale simulation Ion-scale demonstrates cross- stabilization 1 with real β scale interactions. β =0.04% (ii) If yes, how do the 0.1 β =2.0% interactions occur?  Nonlinear interaction 0.1 1 10 analysis reveals their Poloidal wave number k y ρ ti mechanisms. 3

  5. The GKV code [Watanabe06NF,Maeyama13CPC] • Solve gyrokinetic ions and electrons with electromagnetic fluctuations in a flux-tube geometry. • Validation with experiments. [Posters:Nakata,Ishizawa,Nunami] • High scalability allows ITG/TEM/ETG simulations with ~100k CPU cores in ~100 hours. [Maeyama13SC] 5 Plasma parameters are Cyclone base case 2.5 ITG/TEM parameters [Dimits00PoP] 0 • R/L Ti =R/L Te =6.82, -2.5 R/L n =2.2, T e =T i , -5 r/R=0.18, q=1.4, s=0.786 • Real mass ratio: m i /m e =1836 • Real β value: β =2.0% ETG (below NZT [Pueschel13PRL]) 4

  6. Multi-scale turbulence simulation ( β =2.0% ) Time evolution of the electrostatic potential fluctuations (at mid-plane of the flux tube) 5

  7. Energy Spectra spectrum ( β =2.0% ) 2 ) 10 2 Field energy W k R 2 /(n 0 T i ρ ti  ITG Linear growth rate  R/v ti ITG/TEM (k y ρ ti <1) 10 10 1 Zonal (k y ρ ti =0) 1 ETG/ Med. (1<k y ρ ti <4) 1 ITG/ Strea ETG/Streamers 10 -1 TEM mers (4<k y ρ ti ) 0.1 10 -2 Med. 0.1 1 10 10 -3 Poloidal wave 0 20 40 60 80 Time t v ti /R number k y ρ ti 6

  8. Energy Spectra spectrum ( β =2.0% ) 2 ) 10 2 Field energy W k R 2 /(n 0 T i ρ ti  ITG Linear growth rate  R/v ti ITG/TEM (k y ρ ti <1) 10 10 1 Zonal (k y ρ ti =0) 1 ETG/ Med. (1<k y ρ ti <4) 1 ITG/ Strea ETG/Streamers 10 -1 TEM mers (4<k y ρ ti ) 0.1 10 -2 Med. 0.1 1 10 10 -3 Poloidal wave 0 20 40 60 80 Time t v ti /R number k y ρ ti 10 W k 10 -6 6 0.1 10 k y

  9. Energy Spectra spectrum ( β =2.0% ) 2 ) 10 2 Field energy W k R 2 /(n 0 T i ρ ti  ITG Linear growth rate  R/v ti ITG/TEM (k y ρ ti <1) 10 10 1 Zonal (k y ρ ti =0) 1 ETG/ Med. (1<k y ρ ti <4) 1 ITG/ Strea ETG/Streamers 10 -1 TEM mers (4<k y ρ ti ) 0.1 10 -2 Med. 0.1 1 10 10 -3 Poloidal wave 0 20 40 60 80 Time t v ti /R number k y ρ ti 10 10 W k W k 10 -6 10 -6 6 0.1 10 0.1 10 k y k y

  10. Energy Spectra 10 W k spectrum ( β =2.0% ) 10 -6 0.1 10 k y 2 ) 10 2 Field energy W k R 2 /(n 0 T i ρ ti  ITG Linear growth rate  R/v ti ITG/TEM (k y ρ ti <1) 10 10 1 Zonal (k y ρ ti =0) 1 ETG/ Med. (1<k y ρ ti <4) 1 ITG/ Strea ETG/Streamers 10 -1 TEM mers (4<k y ρ ti ) 0.1 10 -2 Med. 0.1 1 10 10 -3 Poloidal wave 0 20 40 60 80 Time t v ti /R number k y ρ ti 10 10 W k W k 10 -6 10 -6 6 0.1 10 0.1 10 k y k y

  11. Energy Spectra 10 10 W k W k spectrum ( β =2.0% ) 10 -6 10 -6 0.1 10 0.1 10 k y k y 2 ) 10 2 Field energy W k R 2 /(n 0 T i ρ ti  ITG Linear growth rate  R/v ti ITG/TEM (k y ρ ti <1) 10 10 1 Zonal (k y ρ ti =0) 1 ETG/ Med. (1<k y ρ ti <4) 1 ITG/ Strea ETG/Streamers 10 -1 TEM mers (4<k y ρ ti ) 0.1 10 -2 Med. 0.1 1 10 10 -3 Poloidal wave 0 20 40 60 80 Time t v ti /R number k y ρ ti 10 10 W k W k 10 -6 10 -6 6 0.1 10 0.1 10 k y k y

  12. Energy Spectra 10 10 10 W k W k W k spectrum ( β =2.0% ) 10 -6 10 -6 10 -6 0.1 10 0.1 10 0.1 10 k y k y k y 2 ) 10 2 Field energy W k R 2 /(n 0 T i ρ ti  ITG Linear growth rate  R/v ti ITG/TEM (k y ρ ti <1) 10 10 1 Zonal (k y ρ ti =0) 1 ETG/ Med. (1<k y ρ ti <4) 1 ITG/ Strea ETG/Streamers 10 -1 TEM mers (4<k y ρ ti ) 0.1 10 -2 Med. 0.1 1 10 10 -3 Poloidal wave 0 20 40 60 80 Time t v ti /R number k y ρ ti 10 10 W k W k 10 -6 10 -6 6 0.1 10 0.1 10 k y k y

  13. Electron energy diffusion spectrum in multi-scale turbulence is NOT a sum of single-scale ones.  In zero- β case, due to strong electron-scale suppression, ion-scale simulations give a good estimate.  In finite- β case , electron-scale suppression is weak. Ion-scale transport is enhanced in multi-scale analysis. Zero- β case ( β =0.04%) Finite β case ( β =2.0%) Electron thermal diffusion Electron thermal diffusion 10 2 10 2 100 100 Electron- Electron- scale sim. scale sim.  e =7.2  gB  e =5.4  gB coefficient  ek /  gB coefficient  ek /  gB 1 1 1 1 Ion-scale Ion-scale sim.  e =6.4  gB sim. 10 -2 10 -2  e =1.2  gB 0.01 0.01 Multi-scale Multi-scale sim.  e =4.5  gB sim.  e =6.3  gB 10 -4 10 -4 0.0001 0.0001 0.1 1 10 0.1 1 10 Poloidal wave number k y ρ ti Poloidal wave number k y ρ ti * Ion energy diffusion is similar (see proceedings). 7

  14. Analysis of nonlinear interactions Poloidal wave number q y ρ ti Gyrokinetic triad transfer - Mode-to-mode nonlinear k transfer of perturbed entropy [Nakata12PoP] 𝒒,𝒓 𝐽 𝑡𝒍 = 𝐾 𝑡𝒍 𝒒 𝒓 𝒄 ⋅ 𝒒 × 𝒓 𝒒,𝒓 = 𝜀 𝒍+𝒒+𝒓,𝟏 p 𝐾 𝑡𝒍 2𝐶 𝑈 𝑡 𝑕 𝑡𝒍 q 𝑒𝑤 3 𝜓 𝑡𝒒 𝑕 𝑡𝒓 − 𝜓 𝑡𝒓 𝑕 𝑡𝒒 × Re 𝐺 𝑡𝑁 k + p + q = 0 𝒍 − 𝑤 ∥ 𝐵 ∥𝒍 、 ( Generalized potential 𝜓 𝑡𝒍 = 𝜚 𝑓 𝑡 𝐺 𝑡𝑁 𝒍 ) Nonadiabatic distribution 𝑕 𝑡𝒍 = 𝑔 𝑡𝒍 + 𝜚 Radial wave number q x ρ ti 𝑈 𝑡 Electron-scale suppression mechanism: • Ion-scale ZF shearing? Or, Another structures? Ion-scale enhancement mechanism: • Inverse cascade to ion-scale turbulence? Or, Damping of ion-scale ZFs? 8

  15. Suppression of electron-scale streamers by high-k x ITG/TEM structures. 𝒒,𝒓 Triad transfer 𝐾 𝑡𝒍 for a streamer 𝑡 (k x ρ ti ,k y ρ ti )=(0,4.4) at t=20-30R/v ti Poloidal wave number q y ρ ti 6 [a.u.] 2 × 10 -5 4 k (Streamer) 1 × 10 -5 2 0 0 -1 × 10 -5 -2 -2 × 10 -5 -4 -6 -6 -4 -2 0 2 4 6 Radial wave number q x ρ ti 9

  16. Suppression of electron-scale streamers by high-k x ITG/TEM structures. Kinetic electrons create 𝒒,𝒓 Triad transfer 𝐾 𝑡𝒍 for a streamer 𝑡 fine radial structures (k x ρ ti ,k y ρ ti )=(0,4.4) at t=20-30R/v ti [Dominski12JPCS, (k x ρ ti >1). Maeyama14PoP] Poloidal wave number q y ρ ti 6 [a.u.] 2 × 10 -5 4 k (Streamer) 1 × 10 -5 2 0 0 p (~1.6 ρ ti -1 ) -1 × 10 -5 -2 -2 × 10 -5 -4 -6 -6 -4 -2 0 2 4 6 Radial wave number q x ρ ti 9

  17. Suppression of electron-scale streamers by high-k x ITG/TEM structures. Kinetic electrons create 𝒒,𝒓 Triad transfer 𝐾 𝑡𝒍 for a streamer 𝑡 fine radial structures (k x ρ ti ,k y ρ ti )=(0,4.4) at t=20-30R/v ti [Dominski12JPCS, (k x ρ ti >1). Maeyama14PoP] Poloidal wave number q y ρ ti 6 [a.u.] At the reduction phase, 2 × 10 -5 4 these radial structures k (Streamer) suppress streamers. 1 × 10 -5 2 0 0 p (~1.6 ρ ti -1 ) -1 × 10 -5 -2 -2 × 10 -5 -4 -6 -6 -4 -2 0 2 4 6 Radial wave number q x ρ ti 9

  18. Suppression of electron-scale streamers by high-k x ITG/TEM structures. Kinetic electrons create 𝒒,𝒓 Triad transfer 𝐾 𝑡𝒍 for a streamer 𝑡 fine radial structures (k x ρ ti ,k y ρ ti )=(0,4.4) at t=20-30R/v ti [Dominski12JPCS, (k x ρ ti >1). Maeyama14PoP] Poloidal wave number q y ρ ti 6 [a.u.] At the reduction phase, 2 × 10 -5 4 these radial structures k (Streamer) suppress streamers. 1 × 10 -5 2 0 0 p (~1.6 ρ ti -1 ) -1 × 10 -5 -2 q (Finer mode) -2 × 10 -5 -4 -6 -6 -4 -2 0 2 4 6 Radial wave number q x ρ ti 9

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend