tsunami hazard assessment for dibba oman and dibba united
play

TSUNAMI HAZARD ASSESSMENT FOR DIBBA OMAN AND DIBBA UNITED ARAB - PowerPoint PPT Presentation

TSUNAMI HAZARD ASSESSMENT FOR DIBBA OMAN AND DIBBA UNITED ARAB EMIRATES El-Hussain I, Al-Habsi Z, Omira R, Al-Bulushi K, Deif A, Al-Rawas G, Mohammad AME, Baptista MA OUTLINE 1. INTORDUCTION 2. PERPARATION OF TSUNAMI MODEL 2.1 Building the


  1. TSUNAMI HAZARD ASSESSMENT FOR DIBBA OMAN AND DIBBA UNITED ARAB EMIRATES El-Hussain I, Al-Habsi Z, Omira R, Al-Bulushi K, Deif A, Al-Rawas G, Mohammad AME, Baptista MA

  2. OUTLINE 1. INTORDUCTION 2. PERPARATION OF TSUNAMI MODEL 2.1 Building the DEM 2.2 Nested grids 3. METHODOLOGY 3.1 Deterministic Tsunami Hazard Assessment  Initial condition  Numerical simulation (NSWING) 3.2 Probabilistic Tsunami Hazard Assessment 4. RESULTS 4.1 Deterministic Tsunami Hazard Assessment 4.2 Probabilistic Tsunami Hazard Assessment 5. CONCLUSIONS

  3. 1.INTORDUCTION  Tsunami hazard assessment in spot light  Collaboration research study between SQU and UAEU  The ultimate goal  This study we used state-of-the-art techniques to model tsunami generation, propagation and impact based on near field earthquake sources both far field and non-seismic sources are not subjected in this study

  4. 2. PERPARATION OF TSUNAMI MODEL 2.1 Building the DEM The DEM was generated from different Data sets:  GEPCO (30 seconds arc resolution)  Aster (30 meter resolution)  Nautical maps  Topography grid (5 meter resolution)  Bathymetry grid (5 meter resolution)

  5. 2. PERPARATION OF TSUNAMI MODEL 2.1 Building the DEM The resultant DEM is a 10 m resolution grid which combine both bathymetry and topography data A 3D view of DEM 10m Resolution for DIBBA

  6. 2. PERPARATION OF TSUNAMI MODEL 2.2 Nested grids  Smooth propagation  Numerical stability  Refinement factor of 5  Four resolution grid layers: layer 1: 1250 m layer 2: 250 m layer 3: 50 m layer 4: 10 m

  7. 3. METHODOLOGY 3.1 DETERMINISTIC TSUNAMI HAZARD ASSESSMENT (DTHA)  Initial Condition Length Width Scenario MSZ (km) Slip(m) Dip(0) Strike(0) Rake(0) Mw (km) 1 Eastern 461 110 11.1 7 263 90 8.8 2 Western 30 20 1.8 7 281 90 6.9 Historical MSZ Length Width (km) Slip(m) Dip(0) Strike(0) Rake(0) Mw Tsunami (km) 27 Nov. 1945 150 70 6.6 7 246 90 8.1

  8. A DIBBA DIBBA B Initial Sea Level Deformation for Eastern Makran Subduction Zone Mw8.8 Scenario Generation of initial sea level deformation grid . A profile graph AB plot perpendicular to the fault showing a maximum initial wave height of 4.2m A B

  9. 3.1 DETERMINISTIC TSUNAMI HAZARD ASSESSMENT (DTHA)  Numerical Simulation In this study, a Numerical code called NSWING (Non-linear Shallow water Regional Tsunami animation of EMSZ Mw8.8 Scenario model with nested grids) is used to compute tsunami wave forms that includes the discretization and explicit leap-frog finite difference scheme to solve the shallow water equations in spherical coordinates The tsunami impact descried in term of maximum wave height, flow depth ,run- up, drawback and inundation distance.

  10. 3.2 PROBABILISTIC TSUNAMI HAZARD ASSESSMENT (PTHA) Probabilistic tsunami hazard assessment approach Scenario Fault Duration Num Grid name Mw length width slip Dip Number location hours consists in considering the recurrence rate of 1 mw7.9sc01 7.9 sc1 East 100 70 5 7 6 2 mw7.9sc02 7.9 sc2 East 100 70 5 7 6 3 mw7.9sc03 7.9 sc3 East 100 70 5 7 6 earthquake scenarios with different magnitudes. The 4 mw7.9sc04 7.9 sc4 East 100 70 5 7 6 5 mw7.9sc05 7.9 sc5 East 100 70 5 7 6 result is a probability of exceeding a certain wave 6 mw7.9sc06 7.9 sc6 East 100 70 5 7 6 7 mw7.9sc07 7.9 sc7 East 100 70 5 7 6 height/flow depth in a given periods. 8 mw7.9sc08 7.9 sc8 East 100 70 5 7 6 9 mw7.9sc09 7.9 sc9 West 100 70 5 7 4 10 mw7.9sc10 7.9 sc10 West 100 70 5 7 4 11 mw7.9sc11 7.9 sc11 West 100 70 5 7 4 12 mw7.9sc12 7.9 sc12 West 100 70 5 7 4 13 mw7.9sc13 7.9 sc13 West 100 70 5 7 4 14 mw7.9sc14 7.9 sc14 West 100 70 5 7 4 15 mw8.1sc01 8.1 sc1 East 150 70 6 7 6 16 mw8.1sc02 8.1 sc2 East 150 70 6 7 6 17 mw8.1sc03 8.1 sc3 East 150 70 6 7 6 18 mw8.1sc04 8.1 sc4 East 150 70 6 7 6 19 mw8.1sc05 8.1 sc5 East 150 70 6 7 6 20 mw8.1sc06 8.1 sc6 Entire 150 70 6 7 6 21 mw8.1sc07 8.1 sc7 West 150 70 6 7 4 22 mw8.1sc08 8.1 sc8 West 150 70 6 7 4 23 mw8.1sc09 8.1 sc9 West 150 70 6 7 4 24 mw8.3sc01 8.3 sc1 East 300 110 4 7 6 25 mw8.3sc02 8.3 sc2 East 300 110 4 7 6 26 mw8.3sc03 8.3 sc3 Entire 300 110 4 7 6 27 mw8.3sc04 8.3 sc4 West 300 110 4 7 4 28 mw8.5sc01 8.5 sc1 East 350 110 6.5 7 6 29 mw8.5sc02 8.5 sc2 Entire 350 110 6.5 7 6 30 mw8.5sc03 8.5 sc3 West 350 110 6.5 7 4 31 mw8.7sc01 8.7 sc1 East 400 110 10 7 6 32 mw8.7sc02 8.7 sc2 Entire 400 110 10 7 6 33 mw8.7sc03 8.7 sc3 West 350 110 11 7 4 34 mw8.9sc01 8.9 sc1 Entire 808 110 10 7 6 35 mw9.1sc01 9.1 sc2 West 808 215 10 7 4

  11. 4. RESULTS 4.1 Deterministic tsunami hazard assessment  Regional MWH and TTT for EMSZ Mw8.8 Scenario Length Width (km) Slip(m) Dip(0) Strike(0) Rake(0) Mw (km) 461 110 11.1 7 263 90 8.8 MWH 6 m TTT 1 hr. 24 min Regional Tsunami animation of EMSZ Mw8.8 Scenario

  12. 4. RESULTS 4.1 Deterministic tsunami hazard assessment  Regional MWH and TTT for WMSZ Mw6.9 Scenario Length Width (km) Slip(m) Dip(0) Strike(0) Rake(0) Mw (km) 30 20 1.8 7 281 90 6.9 MWH 0.6 m TTT 48 min Regional Tsunami animation of WMSZ Mw6.9 Scenario

  13. 4. RESULTS 4.1 Deterministic tsunami hazard assessment  Regional MWH and TTT for Historical MSZ 1945 Mw 8.1 Length Width (km) Slip(m) Dip(0) Strike(0) Rake(0) Mw (km) 150 70 6.6 7 246 90 8.1 MWH 4.3 m TTT 1 hr. 42 min Regional Tsunami animation of HMSZ 1945 Mw8.1

  14. 4. RESULTS 4.1 Deterministic tsunami hazard assessment  DIBBA Maximum Wave height and Flow depth for EMSZ Mw8.8 Scenario

  15. 4. RESULTS 4.1 Deterministic tsunami hazard assessment  DIBBA Maximum Wave height and Flow depth for WMSZ Mw6.9 Scenario

  16. 4. RESULTS 4.1 Deterministic tsunami hazard assessment  DIBBA Maximum wave Height and Flow depth for Historical MSZ 1945 Mw8.1

  17. 4. RESULTS 4.2 Probabilistic tsunami hazard assessment  DIBBA 100-years Probability that MWH/Flow depth exceeds 0.5m , 1.0m and 2.0m

  18. 4. RESULTS 4.2 Probabilistic tsunami hazard assessment  DIBBA 250-years Probability that MWH/Flow depth exceeds 0.5m , 1.0m and 2.0m

  19. 4. RESULTS 4.2 Probabilistic tsunami hazard assessment  DIBBA 500-years Probability that MWH/Flow depth exceeds 0.5m , 1.0m and 2.0m

  20. 4. RESULTS 4.2 Probabilistic tsunami hazard assessment  DIBBA 1000-years Probability that MWH/Flow depth exceeds 0.5m , 1.0m and 2.0m

  21. 5. CONCLUSIONS 5.1 DTHA Summary Runup (m) 1.2 1.2 Flow Depth (m) 1.1 1.0 0.9 0.9 0.8 0.6 0.5 0.5 0.4 0.2 0.0 EMSZ Mw8.8 WMSZ Mw6.9 1945MSZ Mw8.1 EMSZ Mw8.8 WMSZ Mw6.9 1945MSZ Mw8.1 Maximum Inundation (m) 456 310 152 Area Flooded (x10 3 m²) 371 217 70

  22. 5. CONCLUSIONS 5.2 PTHA Summary Tsunami Probability that a maximum wave height Exposure offshore exceed the given value period 0.5 m 1.0 m 2.0 m 100 years 90% 75% 25% 250 years 100% 90% 35% 500 years 100% 100% 50% 1000 years 100% 100% 60%

  23. THANK YOU اركش

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend