transverse accelerator dynamics
play

Transverse Accelerator Dynamics Ralph J. Steinhagen Special - PowerPoint PPT Presentation

Transverse Accelerator Dynamics Ralph J. Steinhagen Special acknowledgements and credits to: B. Goddard, B. Holzer & R. Steerenberg Transverse Dynamics / OP-Training, R.Steinhagen@gsi.de, 2016-01-26 Outline Part I Linear Beam Dynamics


  1. Transverse Accelerator Dynamics Ralph J. Steinhagen Special acknowledgements and credits to: B. Goddard, B. Holzer & R. Steerenberg Transverse Dynamics / OP-Training, R.Steinhagen@gsi.de, 2016-01-26

  2. Outline Part I – Linear Beam Dynamics & Hill's Equation – Periodic Focusing System in Circular Accelerators – Phase Space Ellipse – Emittance & Acceptance – Machine Imperfections • Betatron Tune & Beam Stability Part II – Non-Linear Dynamics & Injection/Extraction – Non-linear dynamics: • limits of stable motion – Separatrix • Dispersion & Chromaticity • Space charge effects – Injection & Extraction: • Fast extraction, Multiturn Injection (phase-space painting) • Basics of resonance-, KO-extraction GSI Accelerator Operator Training – Transverse Dynamics, Darmstadt, Germany, R.Steinhagen@gsi.de, 2016-01-26

  3. Question: Does the Moon revolve around the Earth or the Sun? Transverse Dynamics / OP-Training, R.Steinhagen@gsi.de, 2016-01-26

  4. Moon's Trajectory around Sun F=ma x F gravity s ρ(s) Transverse Dynamics / OP-Training, R.Steinhagen@gsi.de, 2016-01-26 not to scale!*

  5. Transverse Beam Dynamics Hill's equation 1,2 : K ( s )= ( p B dipole ) ∂ B y 2 q q − z '' + K ( s ) ⋅ z = f ( s ,t ) ⏟ ⏟ p ∂ x strong focusing : k ( s ) weak focusing : 1 ρ 2 – k(s): focusing strength, defines: G.W. Hill 1838-1914 • betatron function β(s) → envelope of the oscillation • dispersion function D(s) → trajectory for off-momentum Δp/p 0 particles – f(s,t): external driving force 1 George William Hill, “On the part of the motion of the lunar perigee which is a function shorthand: x ' = dx of the mean motions of the sun and moon” , Acta Mathematica, 8:1–36, 1886 & z : = ' x ' or ' y ' 2 coordinate 'z' being place holder for either x,y ds Transverse Dynamics / OP-Training, R.Steinhagen@gsi.de, 2016-01-26

  6. Hill's Equation I/II Simplified Hill's equation 1,2 : ∂ B y K ( s )= − q z '' + K ( s ) ⋅ z = 0 ∧ (I) ⏟ p ∂ x Cournat, (Cosmotron) , Livingston, Snyder, strong focusing Blewet (LINACs) – If the restoring force K(s) would be constant in ‘s’ → Simple Harmonic Oscillator • usually K(s) varies strongly with 's' (discrete magnets, FODO arrangement, ..) How to solve? – Try the following Ansatz 1,2 : z   s  =   i   s  ⋅ sin   s   i  (II) ε i ,Φ i : initial particle state – derive (II) twice to obtain z'' and insert into (I) – Don't worry, KISS → solution typically (nearly always) done numerically using tools like: MAD-X, ORBIT, TRANSPORT, ELEGANT, MIRKO, ... 1 Richard Q. Twiss and N. H. Frank, “Orbital stability in a proton synchrotron”, Rev. Sci. Instr., 20(1):1–17, January 1949. 2 E. D. Courant and H. S. Snyder, “Theory of the Alternating-Gradient Synchrotron”, Annals of Physic, 3, 1, 1958. shorthand: x ' = dx ds Transverse Dynamics / OP-Training, R.Steinhagen@gsi.de, 2016-01-26

  7. MAD-X Typical Output MQF MQD MQF MQD MQF MQD MB MB MB MB MB MB BPM BPM BPM BPM BPM BPM BPM Transverse Dynamics / OP-Training, R.Steinhagen@gsi.de, 2016-01-26

  8. FoDo alternatives → FD Doublet Lattice More space between quads Stronger quad strengths Round beams Used e.g. in CTF3 linac FoDo FD Doublet Transverse Dynamics / OP-Training, R.Steinhagen@gsi.de, 2016-01-26

  9. Many Alternatives a) Weak focusing (dipole only) b) FODO line (w/o dipoles) c) FODO cell d) Low emittance cell ‐ e) CF low emittance cell ‐ f) Low emittance FODO ‐ g) Dispersion match h) Periodic dispersion match i) Double bend achromat ‐ j) Triple bend achromat ‐ k) ... Very good course on low‐emittance lattice design: A.Streun, PSI Transverse Dynamics / OP-Training, R.Steinhagen@gsi.de, 2016-01-26

  10. Hill's Equation II/II Usually define add. 'Twiss' functions 1 : – betatron phase advance μ(s), α(s) & γ(s) 1 α( s ) : =−β ' ( s ) γ( s ) : = 1 +α 2 ( s ) s Δμ( s ) : = ∫ 0 β( s ' ) ds ' β( s ) 2 – typically stored in look-up tables (e.g. LSA) and re-used for other computations More general first-order solution to Hill's equation: ⏟ ⏟ z ( s ) = z co ( s ) + D ( s ) ⋅ Δ p + z β ( s ) ⏟ p 0 betatronoscillations closedorbit dispersion orbit → sinusoidal particle motion in accelerators: z   s  =   i   s  ⋅ sin   s   i  N.B. discussed later: Dispersion function D(s) – ↔ trajectory dependence for off-momentum particles 1 Richard Q. Twiss and N. H. Frank, “Orbital stability in a proton synchrotron”, Rev. Sci. Instr., 20(1):1–17, January 1949. shorthand: x ' = dx 2 E. D. Courant and H. S. Snyder, “Theory of the Alternating-Gradient Synchrotron”, Annals of Physic, 3, 1, 1958. ds Transverse Dynamics / OP-Training, R.Steinhagen@gsi.de, 2016-01-26

  11. Free Betatron Oscillations Free Betatron Oscillations: z β ( s ) = √ ϵ i β ( s ) ⋅ sin (μ ( s ) +ϕ i ) here: Q = 3.31 q = .31 '1' '2' '3' '4' Betatron Phase Advance: Δμ(s) Tune defined as betatron phase advance over one turn: 1 Q : = [ μ ( C ) −μ ( 0 ) ] common: Q =   Q int  q frac 2 π integer tune fractional tune Transverse Dynamics / OP-Training, R.Steinhagen@gsi.de, 2016-01-26

  12. Free Betatron Oscillations Example: LHC Betatron Oscillations z β ( s ) = √ ε i β ( s ) ⋅ sin (μ ( s ) +ϕ i ) vertical orbit [mm] ~ √β(s) position in ring [m] Beam size* : σ≈ √ ε i β( s ) Emittance (beam quality) ε i Beta-function β(s) specific for accelerator lattice/ constant around ring → discussed later magnet arrangement *ignores momentum & dispersion dependence Transverse Dynamics / OP-Training, R.Steinhagen@gsi.de, 2016-01-26

  13. Phase Space & (Single-Particle) Emittance Additional result from our Ansatz: Courant-Synder invariant of motion 2 + 2 α( s ) 2 ϵ=β( s ) ⋅ x ' ⋅ xx ' +γ( s ) ⋅ x Interpretation – particle motion describe ellipse in phase space: μ = 3 π /2 x’ μ = 0 = 2 π ε . γ ε / β − α ε / γ − α ε / β ε π x = A ε / γ ε . β Liouville’s Theorem: 'conservative system' (no ‘friction’, i.e. no energy loss/gain) , the phase-space area is invariant/preserved (↔ energy conservation) – N.B. if energy changes 'normalised emittance' ε* is preserved: ε*=ε·β rel γ rel Transverse Dynamics / OP-Training, R.Steinhagen@gsi.de, 2016-01-26

  14. Phase-Space & Twiss-Parameter inside a FoDo Lattice y x x' x y' y Courtesy A. Wolski Transverse Dynamics / OP-Training, R.Steinhagen@gsi.de, 2016-01-26

  15. Emittance & Acceptance II/II E.g. circular beam pipe of radius r ap By analogy with emittance σ≈ √ εβ( s ) – N.B. beam size: 2 A : = r ap Acceptance β( s ) – N.B. sometimes given in units of ' σ ' (beam widths) σ< √ A β( s ) Acceptance chosen such that: A >> ε or – ie. “ beam pipe needs to be larger than beam – duh ” LHC: LHC: cathode Beam 3 σ envel. ~ 1.8 mm @ 7 TeV 50.0 mm Beam 6 σ envel. ~ 12 mm @ 450 TeV ~ 140.0 mm Beam screen ~ third of aperture if filled @ injection (rest kept for orbit/optics/injection error uncertainties) SIS18: 36 mm 300 kV design acceptance 325 umrad @ injection anode design emittance <299 umrad @ injection (wires) (± ~14 mm margin for injection, optics and orbit errors) SIS18 electrostatic injection septum Transverse Dynamics / OP-Training, R.Steinhagen@gsi.de, 2016-01-26

  16. Normalised Phase Space often more conveniently one defines a 'normalised phase space' , ) = √ β ( β ) ( , ) = N ⋅ ( ⋅ ( , ) 1 x x x 1 0 α x x x real phase space normalised phase space x’ − − √ ε α x' √ γ − √ ε 1 − √ ε 1 √ ϵ − √ ε √ γ √ γ √ β − √ ε α √ β N x x Area = πε Area = πε − √ ε √ β √ ϵ 2 + 2 α( s )⋅ xx ' +γ( s ) 2 ϵ=β( s ) ⋅ x ' ⋅ x 2 +¯ ,2 ϵ=¯ x x Transverse Dynamics / OP-Training, R.Steinhagen@gsi.de, 2016-01-26

  17. Recap: Transfer of Optics Parameter = M ( ( x ' ) s x ' ) 0 x x Conservation of emittance 2 + 2 α 0 x 0 x ' 0 + γ 0 x 0 2 ϵ=β 0 x ' 0 (1) 2 + 2 α 1 x 1 x ' 1 +γ 1 x 1 2 ϵ=β 1 x ' 1 Express x 0 , x' 0 as a function of x,x' ( x ' ) 0 − 1 ( x ' ) → x 0 = m 22 x − m 12 x ' x x = M (2) x 0 ' =− m 21 x + m 11 x ' Inserting (2) into (1), sorting via x,x', the rest is math ... 2 ) γ ) = ( 2 2 − 2 m 11 m 12 m 11 m 12 ( ⋅ ( γ ) 0 β β − m 11 m 21 m 12 m 21 + m 22 m 11 − m 12 m 22 α α 2 m 12 − 2 m 22 m 21 m 22 Transverse Dynamics / OP-Training, R.Steinhagen@gsi.de, 2016-01-26

  18. Difference: Transfer-Line (LINAC) vs. Ring I/II Circular Machine (ring): ● β, α & γ are not free parameter but need to fulfill special periodic boundary condition: ● β(s+C) = β(s) ● α(s+C) = α(s) ● γ(s+C) = γ(s) One-pass Machine (LINAC/transfer-lines): ● Causality! ● Need to provide initial parameter for β, α & γ: ● β(s=0) = β 0 ● α(s=0) = α 0 ● γ(s=0) = γ 0 ● otherwise, trans. particle transfer the same Transverse Dynamics / OP-Training, R.Steinhagen@gsi.de, 2016-01-26

  19. Difference: Transfer-Line (LINAC) vs. Ring II/II Circular Machine (ring): ● as before One-pass Machine (LINAC/transfer-lines): ● 10% different initial conditions → β-beating → causes problems with matching and emittance preservation at injection (later more) Transverse Dynamics / OP-Training, R.Steinhagen@gsi.de, 2016-01-26

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend