towards mixed gr obner basis algorithms the
play

Towards Mixed Gr obner Basis Algorithms: the Multihomogeneous and - PowerPoint PPT Presentation

Towards Mixed Gr obner Basis Algorithms: the Multihomogeneous and Sparse Case July 19, 2018 Mat as R. Bender, Jean-Charles Faug` ere & Elias Tsigaridas Sorbonne Universit e, CNRS , INRIA , Laboratoire dInformatique de Paris 6,


  1. Towards Mixed Gr¨ obner Basis Algorithms: the Multihomogeneous and Sparse Case July 19, 2018 Mat´ ıas R. Bender, Jean-Charles Faug` ere & Elias Tsigaridas Sorbonne Universit´ e, CNRS , INRIA , Laboratoire d’Informatique de Paris 6, LIP6 , ´ Equipe PolSys , 4 place Jussieu, F-75005, Paris, France

  2. Computing Gr¨ obner basis over K [ x 1 , . . . , x n ] Consider ( f 1 , . . . , f r ) ∈ K [ x 1 , . . . , x n ]  Gr¨ obner basis Membership (Normal    Consider the ideal of f 1 , . . . , f r in  forms)  K [ x 1 , . . . , x n ]. Solving (Elimination)   There is a (finite) Gr¨ obner basis.   etc...  1/11

  3. Computing Gr¨ obner basis over K [ x 1 , . . . , x n ] Consider ( f 1 , . . . , f r ) ∈ K [ x 1 , . . . , x n ]  Gr¨ obner basis Membership (Normal    Consider the ideal of f 1 , . . . , f r in  forms)  K [ x 1 , . . . , x n ]. Solving (Elimination)   There is a (finite) Gr¨ obner basis.   etc...  Computation If the homogenization of f 1 , . . . , f r (over K [ x 0 , x 1 , . . . , x n ]) is a regular sequence Avoid redundant computations (F5) Complexity bounds (Castelnuovo-Mumford Regularity) 1/11

  4. Computing Gr¨ obner basis over K [ x 1 , . . . , x n ] Consider ( f 1 , . . . , f r ) ∈ K [ x 1 , . . . , x n ]  Gr¨ obner basis Membership (Normal    Consider the ideal of f 1 , . . . , f r in  forms)  K [ x 1 , . . . , x n ]. Solving (Elimination)   There is a (finite) Gr¨ obner basis.   etc...  Computation    If the homogenization of f 1 , . . . , f r     For sparse systems, the (over K [ x 0 , x 1 , . . . , x n ]) is a    regular sequence homogenization is NOT a regular sequence . Avoid redundant computations (F5)     Complexity bounds    (Castelnuovo-Mumford Regularity)   1/11

  5. Sparse systems α c α X α − Support of f = � → Monomials in f , { α : c α � = 0 } . Sparse system − → The supports of the polynomials are “small”. 1 + xy + x 2 y + x 2 y 2 + x 3 y = 1 + 0 · x + 0 · y + 0 · x 2 + xy + 0 · y 2 + 0 · x 3 + x 2 y + 0 · xy 2 + 0 · y 3 + 0 · x 4 + x 3 y + x 2 y 2 + 0 · xy 3 + 0 · y 4 2/11

  6. Sparse systems α c α X α − Support of f = � → Monomials in f , { α : c α � = 0 } . Sparse system − → The supports of the polynomials are “small”. Unmixed sparse system − → The polynomials have the same support. Mixed sparse system − → Different supports. 1 + xy + xy 2 + xy 3 1+ xy + x 2 y + x 2 y 2 + x 3 y 1+ x + xy + x 2 y + x 2 y 2 2/11

  7. Previous work (Non-exhaustive!) Toric varieties [Demazure, 1970], [Hochster, 1971], [Satake, 1973], [Kempf, Knudsen, Mumford & Saint-Donat, 1973], [Miyake & Oda, 1975], [Ehlers, 1975], [Bernstein, 1975], [Kusnirenko, ∼ 1975] [Khovanskii, 1977], . . . . . . [Oda, 1988] . . . [Fulton, 1993] . . . [Cox, Little & Schenck, 2011] Sparse resultant [Gelfand, Kapranov & Zelevinsky, 1990], [Kapranov, Sturmfels & Zelevinsky, 1992], [Sturmfels, 1993], [Pedersen & Sturmfels, 1993], [Gelfand, Kapranov & Zelevinsky, 1994], [Canny & Emiris, 1995], [D´Andrea, 2002], [D´Andrea & Sombra, 2013] Sparse GB [Sturmfels, 1991], [Faug` ere, Spaenlehauer & Svartz, 2014] 3/11

  8. Semigroup algebras: K [ S ] and K [ S h ] K [ S ] 4/11

  9. Semigroup algebras: K [ S ] and K [ S h ] K [ S ] 4/11

  10. Semigroup algebras: K [ S ] and K [ S h ] − → K [ S ] K [ S h ] 4/11

  11. Semigroup algebras: K [ S ] and K [ S h ] − → K [ S ] K [ S h ] 4/11

  12. Semigroup algebras: K [ S ] and K [ S h ] − → K [ S ] K [ S h ] 4/11

  13. Semigroup algebras: K [ S ] and K [ S h ] − → K [ S ] K [ S h ] 4/11

  14. Semigroup algebras: K [ S ] and K [ S h ] − → K [ S ] K [ S h ] 4/11

  15. Semigroup algebras: K [ S ] and K [ S h ] − → K [ S ] K [ S h ] Compute GB over K [ S ] [Faug` ere, Spaenlehauer & Svartz, 2014] There is a Gr¨ obner basis. � If the homogenization of Generic unmixed systems → homogenization f 1 , . . . , f r is regular . f 1 , . . . , f r (over K [ S h ]) is a regular sequence No redundant Generic mixed systems → computations (F5) homogenization of f 1 , . . . , f r is Complexity bounds NOT a regular sequence . (C-M Regularity) 4/11

  16. General approach for affine regular sequences For every k , given GB ( hom ( � f 1 , . . . , f k − 1 � )), compute GB ( J h k ) where J h k := hom ( � f 1 , . . . , f k − 1 � ) + � hom ( f k ) � . 5/11

  17. General approach for affine regular sequences For every k , given GB ( hom ( � f 1 , . . . , f k − 1 � )), compute GB ( J h k ) where J h k := hom ( � f 1 , . . . , f k − 1 � ) + � hom ( f k ) � . � GB ( � f 1 ,..., f k � ) , and For GRevLex orders: GB ( J h k ) − → GB ( hom ( � f 1 , . . . , f k � )) . 5/11

  18. General approach for affine regular sequences For every k , given GB ( hom ( � f 1 , . . . , f k − 1 � )), compute GB ( J h k ) where J h k := hom ( � f 1 , . . . , f k − 1 � ) + � hom ( f k ) � . � GB ( � f 1 ,..., f k � ) , and For GRevLex orders: GB ( J h k ) − → GB ( hom ( � f 1 , . . . , f k � )) . Lazard’s approach to GB ( J h k ), for each d ≤ reg ( J h k ), Compute a triangular basis of vector space ( J h k ) d . ( J h k ) d Gaussian elimination 5/11

  19. General approach for affine regular sequences For every k , given GB ( hom ( � f 1 , . . . , f k − 1 � )), compute GB ( J h k ) where J h k := hom ( � f 1 , . . . , f k − 1 � ) + � hom ( f k ) � . � GB ( � f 1 ,..., f k � ) , and For GRevLex orders: GB ( J h k ) − → GB ( hom ( � f 1 , . . . , f k � )) . Lazard’s approach to GB ( J h k ), for each d , compute triangular basis of ( J h k ) d . ( J h k ) d Gaussian elimination 5/11

  20. General approach for affine regular sequences For every k , given GB ( hom ( � f 1 , . . . , f k − 1 � )), compute GB ( J h k ) where J h k := hom ( � f 1 , . . . , f k − 1 � ) + � hom ( f k ) � . � GB ( � f 1 ,..., f k � ) , and For GRevLex orders: GB ( J h k ) − → GB ( hom ( � f 1 , . . . , f k � )) . Lazard’s approach to GB ( J h k ), for each d , compute triangular basis of ( J h k ) d . Affine F5 criterion , if ( f 1 , . . . , f r ) is an affine regular sequence , Reductions to zero in ( J h → polynomials in ( J h k ) d ← k − 1 ) d − deg ( f k ) . ( J h k ) d F5 Gauss. elim. 5/11

  21. General approach for affine regular sequences For every k , given GB ( hom ( � f 1 , . . . , f k − 1 � )), compute GB ( J h k ) where J h k := hom ( � f 1 , . . . , f k − 1 � ) + � hom ( f k ) � . � GB ( � f 1 ,..., f k � ) , and For GRevLex orders: GB ( J h k ) − → GB ( hom ( � f 1 , . . . , f k � )) . Lazard’s approach to GB ( J h k ), for each d , compute triangular basis of ( J h k ) d . Affine F5 criterion, if ( f 1 , . . . , f r ) is an affine regular sequence , Reductions to zero in ( J h → polynomials in ( J h k ) d ← k − 1 ) d − deg ( f k ) . ( J h k ) d F5 Gauss. elim. We want to do the same over K [ S ] , we need GRevLex orders. 5/11

  22. Sparse Degree sp ( X α ) = minimal s s.t. X α, s ∈ K [ S h ]. α c α X α , For f := � sp ( f ) = max ( { sp ( X α ) : c α � = 0 } ). Example sp ( x 2 y 2 + x 4 y 3 + x 6 y 5 ) = 4 sp ( x 2 y 2 ) = 2 ,   sp ( x 4 y 3 ) = 3 , sp ( x 6 y 5 ) = 4  6/11

  23. Sparse Degree Sparse order sp ( X α ) = minimal s s.t. X α, s ∈ K [ S h ]. An order ≺ is compatible with the α c α X α , For f := � sparse degree ⇐ ⇒ ( ∀ α, β ∈ S ) if sp ( X α ) < sp ( X β ), then X α ≺ X β . sp ( f ) = max ( { sp ( X α ) : c α � = 0 } ). Example sp ( x 2 y 2 + x 4 y 3 + x 6 y 5 ) = 4 sp ( x 2 y 2 ) = 2 ,   sp ( x 4 y 3 ) = 3 , sp ( x 6 y 5 ) = 4  LM ≺ ( x 2 y 2 + x 4 y 3 + x 6 y 5 ) = x 6 y 5 6/11

  24. Sparse orders Not “behave well” with multiplication. X α · LM ≺ ( f ) � = LM ≺ ( X α · f ) Not monomial orders. The division might not � LM ≺ ( y + x ) = y terminate. LM ≺ ( x · ( y + x )) = x 2 � = x · LM ≺ ( x + y ) 7/11

  25. Sparse orders Not “behave well” with multiplication. X α · LM ≺ ( f ) � = LM ≺ ( X α · f ) Not monomial orders. The division might not � LM ≺ ( y + x ) = y terminate. LM ≺ ( x · ( y + x )) = x 2 � = x · LM ≺ ( x + y ) � X β X α ∈ K [ S ] X α divides X β , X α || X β , iff sp ( X α ) + sp ( X β X α ) = sp ( X β ) . 7/11

  26. Sparse orders Not “behave well” with multiplication. X α · LM ≺ ( f ) � = LM ≺ ( X α · f ) Not monomial orders. The division might not � LM ≺ ( y + x ) = y terminate. LM ≺ ( x · ( y + x )) = x 2 � = x · LM ≺ ( x + y ) � X β X α ∈ K [ S ] X α divides X β , X α || X β , iff sp ( X α ) + sp ( X β X α ) = sp ( X β ) . 7/11

  27. Sparse orders Not “behave well” with multiplication. X α · LM ≺ ( f ) � = LM ≺ ( X α · f ) Not monomial orders. The division might not � LM ≺ ( y + x ) = y terminate. LM ≺ ( x · ( y + x )) = x 2 � = x · LM ≺ ( x + y ) � X β X α ∈ K [ S ] X α divides X β , X α || X β , iff sp ( X α ) + sp ( X β X α ) = sp ( X β ) . The division algorithm terminates, X α � � If LM ≺ ( f ) || X α , then LM ≺ = X α . LM ≺ ( f ) · f 7/11

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend