hardness vs randomness for bounded depth arithmetic
play

Hardness vs Randomness for Bounded Depth Arithmetic Circuits - PowerPoint PPT Presentation

Hardness vs Randomness for Bounded Depth Arithmetic Circuits Chi-Ning Chou Mrinal Kumar Noam Solomon Harvard University 1 Outline Arithmetic circuits and algebraic complexity classes Polynomial identity testing (PIT) Hardness vs


  1. NW generator - reducing #variables q ∈ C n f f f … m y | S 1 y | S 2 y | S n S n S 2 S 1 m Nisan- ` Wigderson y Design 14

  2. NW generator - reducing #variables q ∈ C n ` y 14

  3. NW generator - reducing #variables q ∈ C n ` y � � Q ( y ) = q f ( y | S 1 ) , f ( y | S 2 ) , . . . , f ( y | S n ) 14

  4. NW generator - reducing #variables q ∈ C n ` y � � Q ( y ) = q f ( y | S 1 ) , f ( y | S 2 ) , . . . , f ( y | S n ) q 6⌘ 0 Q 6⌘ 0 Want : If then . 14

  5. Key lemma 15

  6. Key lemma q ∈ C y � � Q ( y ) = q f ( y | S 1 ) , f ( y | S 2 ) , . . . , f ( y | S n ) q 6⌘ 0 Q 6⌘ 0 Goal : If , then . 15

  7. Key lemma q ∈ C y � � Q ( y ) = q f ( y | S 1 ) , f ( y | S 2 ) , . . . , f ( y | S n ) q ∈ Depth- ∆ Lemma : Let non-zero and a m-variate f multilinear polynomial of degree . If d � � Q ( y ) = q f ( y | S 1 ) , f ( y | S 2 ) , . . . , f ( y | S n ) ≡ 0 15

  8. Key lemma q ∈ C y � � Q ( y ) = q f ( y | S 1 ) , f ( y | S 2 ) , . . . , f ( y | S n ) q ∈ Depth- ∆ Lemma : Let non-zero and a m-variate f multilinear polynomial of degree . If d � � Q ( y ) = q f ( y | S 1 ) , f ( y | S 2 ) , . . . , f ( y | S n ) ≡ 0 √ d ) poly( n, d Then, f can be computed by a size and depth circuit. ∆ + 5 15

  9. Key lemma q ∈ C y � � Q ( y ) = q f ( y | S 1 ) , f ( y | S 2 ) , . . . , f ( y | S n ) q ∈ Depth- ∆ Lemma : Let non-zero and a m-variate f multilinear polynomial of degree . If d � � Q ( y ) = q f ( y | S 1 ) , f ( y | S 2 ) , . . . , f ( y | S n ) ≡ 0 √ d ) poly( n, d Then, f can be computed by a size and depth circuit. ∆ + 5 f / Q ( y ) 6⌘ 0 , 8 q 2 Depth- ∆ ∈ Depth- ∆ + 5 15

  10. Key lemma q ∈ C y � � Q ( y ) = q f ( y | S 1 ) , f ( y | S 2 ) , . . . , f ( y | S n ) q ∈ Depth- ∆ Lemma : Let non-zero and a m-variate f multilinear polynomial of degree . If d � � Q ( y ) = q f ( y | S 1 ) , f ( y | S 2 ) , . . . , f ( y | S n ) ≡ 0 √ d ) poly( n, d Then, f can be computed by a size and depth circuit. ∆ + 5 f / Q ( y ) 6⌘ 0 , 8 q 2 Depth- ∆ ∈ Depth- ∆ + 5 l e p p Z i - z t r a w h c S 15

  11. ∃ q ∈ Depth- ∆ , Q ( y ) ≡ 0 Proof sketch of the key lemma f ∈ Depth- ∆ + 5 16

  12. ∃ q ∈ Depth- ∆ , Q ( y ) ≡ 0 Proof sketch of the key lemma f ∈ Depth- ∆ + 5 � � If Q ( y ) = q f ( y | S 1 ) , f ( y | S 2 ) , . . . , f ( y | S n ) ≡ 0 16

  13. ∃ q ∈ Depth- ∆ , Q ( y ) ≡ 0 Proof sketch of the key lemma f ∈ Depth- ∆ + 5 � � If Q ( y ) = q f ( y | S 1 ) , f ( y | S 2 ) , . . . , f ( y | S n ) ≡ 0 q ∈ C 6⌘ 0 x n x 2 x 1 16

  14. ∃ q ∈ Depth- ∆ , Q ( y ) ≡ 0 Proof sketch of the key lemma f ∈ Depth- ∆ + 5 � � If Q ( y ) = q f ( y | S 1 ) , f ( y | S 2 ) , . . . , f ( y | S n ) ≡ 0 q ∈ C 6⌘ 0 x n x 2 x 1 q ∈ C ≡ 0 y 16

  15. ∃ q ∈ Depth- ∆ , Q ( y ) ≡ 0 Proof sketch of the key lemma f ∈ Depth- ∆ + 5 17

  16. ∃ q ∈ Depth- ∆ , Q ( y ) ≡ 0 Proof sketch of the key lemma f ∈ Depth- ∆ + 5 By hybrid argument, there exists q ∈ C x n x i f f y | S 1 y | S 2 17

  17. ∃ q ∈ Depth- ∆ , Q ( y ) ≡ 0 Proof sketch of the key lemma f ∈ Depth- ∆ + 5 By hybrid argument, there exists ˜ Q ( z , x i ) z = { x 1 , . . . , x i − 1 , x i +1 , . . . , x n , y } q ∈ C x n x i f f y | S 1 y | S 2 17

  18. ∃ q ∈ Depth- ∆ , Q ( y ) ≡ 0 Proof sketch of the key lemma f ∈ Depth- ∆ + 5 By hybrid argument, there exists ˜ Q ( z , x i ) z = { x 1 , . . . , x i − 1 , x i +1 , . . . , x n , y } q ∈ C x n x i f f y | S 1 y | S 2 ˜ • Q ( z , x i ) 6⌘ 0 17

  19. ∃ q ∈ Depth- ∆ , Q ( y ) ≡ 0 Proof sketch of the key lemma f ∈ Depth- ∆ + 5 By hybrid argument, there exists ˜ Q ( z , x i ) z = { x 1 , . . . , x i − 1 , x i +1 , . . . , x n , y } q ∈ C x n f f f y | S 1 y | S 2 y | S i ˜ • Q ( z , x i ) 6⌘ 0 ˜ • Q ( z , f ( z )) ≡ 0 17

  20. ∃ q ∈ Depth- ∆ , Q ( y ) ≡ 0 Proof sketch of the key lemma f ∈ Depth- ∆ + 5 By hybrid argument, there exists ˜ Q ( z , x i ) q ∈ C x n Fixed Fixed f y | S i ˜ • Q ( z , x i ) 6⌘ 0 ˜ • Q ( z , f ( z )) ≡ 0 17

  21. ∃ q ∈ Depth- ∆ , Q ( y ) ≡ 0 Proof sketch of the key lemma f ∈ Depth- ∆ + 5 By hybrid argument, there exists ˜ Q ( z , x i ) q ∈ C x n Fixed Fixed f y | S i * ˜ Q ( z , x i ) ∈ Depth- ∆ + 1 ˜ • Q ( z , x i ) 6⌘ 0 ˜ • Q ( z , f ( z )) ≡ 0 17

  22. Proof sketch of the key lemma ˜ • Q ( z , x i ) 6⌘ 0 ˜ Q ( z , x i ) ∈ Depth- ∆ + 1 ˜ • Q ( z , f ( z )) ≡ 0 18

  23. Proof sketch of the key lemma ˜ • Q ( z , x i ) 6⌘ 0 ˜ Q ( z , x i ) ∈ Depth- ∆ + 1 ˜ • Q ( z , f ( z )) ≡ 0 ˜ x i − f ( z ) Q ( z , x i ) divides 18

  24. Proof sketch of the key lemma ˜ • Q ( z , x i ) 6⌘ 0 ˜ Q ( z , x i ) ∈ Depth- ∆ + 1 ˜ • Q ( z , f ( z )) ≡ 0 ˜ x i − f ( z ) Q ( z , x i ) divides Reducing to polynomial factorization! 18

  25. Outline • Arithmetic circuits and algebraic complexity classes • Polynomial identity testing (PIT) • Hardness vs Randomness for arithmetic circuits • Polynomial factorization • Open problems 19

  26. Polynomial factorization (Simplified setting) P ( z , f ( z )) = 0 Goal : For any such that . P ( z , y ) ∈ C f ∈ C 0 Show that . 20

  27. Polynomial factorization (Simplified setting) P ( z , f ( z )) = 0 Goal : For any such that . P ( z , y ) ∈ C f ∈ C 0 Show that . C 0 C [Kal89] VP VP 20

  28. Polynomial factorization (Simplified setting) P ( z , f ( z )) = 0 Goal : For any such that . P ( z , y ) ∈ C f ∈ C 0 Show that . C 0 C [Kal89] VP VP Depth- ∆ [DSY09] Depth- ∆ + 3 with bounded individual degree 20

  29. Polynomial factorization (Simplified setting) P ( z , f ( z )) = 0 Goal : For any such that . P ( z , y ) ∈ C f ∈ C 0 Show that . C 0 C [Kal89] VP VP Depth- ∆ [DSY09] Depth- ∆ + 3 with bounded individual degree VF( n log n )) VF( n log n )) [DSS18] (resp. VBP( n log n ), VNP( n log n )) (resp. VBP( n log n ), VNP( n log n )) 20

  30. Polynomial factorization (Simplified setting) P ( z , f ( z )) = 0 Goal : For any such that . P ( z , y ) ∈ C f ∈ C 0 Show that . C 0 C [Kal89] VP VP Depth- ∆ [DSY09] Depth- ∆ + 3 with bounded individual degree VF( n log n )) VF( n log n )) [DSS18] (resp. VBP( n log n ), VNP( n log n )) (resp. VBP( n log n ), VNP( n log n )) Depth- ∆ Our result Depth- ∆ + 3 O (log 2 n/ log 2 log n ) with degree 20

  31. Polynomial factorization (Simplified setting) P ( z , f ( z )) = 0 Goal : For any such that . P ( z , y ) ∈ C f ∈ C 0 Show that . non-deterministic (existential) C 0 C [Kal89] VP VP Depth- ∆ [DSY09] Depth- ∆ + 3 with bounded individual degree VF( n log n )) VF( n log n )) [DSS18] (resp. VBP( n log n ), VNP( n log n )) (resp. VBP( n log n ), VNP( n log n )) Depth- ∆ Our result Depth- ∆ + 3 O (log 2 n/ log 2 log n ) with degree 20

  32. Factorization for bounded depth circuits Goal : For any s.t. . P ( z , f ( z )) = 0 P ( z , y ) ∈ Depth- ∆ f ∈ Depth- ∆ + O (1) Show that . 21

  33. Factorization for bounded depth circuits Goal : For any s.t. . P ( z , f ( z )) = 0 P ( z , y ) ∈ Depth- ∆ f ∈ Depth- ∆ + O (1) Show that . Newton iteration 21

  34. Factorization for bounded depth circuits Goal : For any s.t. . P ( z , f ( z )) = 0 P ( z , y ) ∈ Depth- ∆ f ∈ Depth- ∆ + O (1) Show that . Newton iteration Structure lemma 21

  35. Factorization for bounded depth circuits Goal : For any s.t. . P ( z , f ( z )) = 0 P ( z , y ) ∈ Depth- ∆ f ∈ Depth- ∆ + O (1) Show that . Newton iteration Structure lemma Depth reduction 21

  36. Newton iteration (Sloppy Hensel Lifting) Goal : H ≤ i [ h i ] = H ≤ i [ f ] . 22

  37. Newton iteration (Sloppy Hensel Lifting) Goal : H ≤ i [ h i ] = H ≤ i [ f ] . Def : (Homogeneous components) 22

  38. Newton iteration (Sloppy Hensel Lifting) Goal : H ≤ i [ h i ] = H ≤ i [ f ] . Def : (Homogeneous components) The degree i homogeneous component is the collection of monomials of degree i . 22

  39. Newton iteration (Sloppy Hensel Lifting) Goal : H ≤ i [ h i ] = H ≤ i [ f ] . Def : (Homogeneous components) The degree i homogeneous component is the collection of monomials of degree i . Example : f ( x 1 , x 2 , x 3 ) = x 3 1 x 2 + x 1 x 2 x 3 + x 2 2 + x 1 x 3 + x 4 3 22

  40. Newton iteration (Sloppy Hensel Lifting) Goal : H ≤ i [ h i ] = H ≤ i [ f ] . Def : (Homogeneous components) The degree i homogeneous component is the collection of monomials of degree i . f ( x 1 , x 2 , x 3 ) = x 3 1 x 2 + x 1 x 2 x 3 + x 2 2 + x 1 x 3 + x 4 Example : 3 • H 0 [ f ] = 0 22

  41. Newton iteration (Sloppy Hensel Lifting) Goal : H ≤ i [ h i ] = H ≤ i [ f ] . Def : (Homogeneous components) The degree i homogeneous component is the collection of monomials of degree i . f ( x 1 , x 2 , x 3 ) = x 3 1 x 2 + x 1 x 2 x 3 + x 2 2 + x 1 x 3 + x 4 Example : 3 • H 0 [ f ] = 0 • H 1 [ f ] = 0 22

  42. Newton iteration (Sloppy Hensel Lifting) Goal : H ≤ i [ h i ] = H ≤ i [ f ] . Def : (Homogeneous components) The degree i homogeneous component is the collection of monomials of degree i . f ( x 1 , x 2 , x 3 ) = x 3 1 x 2 + x 1 x 2 x 3 + x 2 2 + x 1 x 3 + x 4 Example : 3 • H 0 [ f ] = 0 • H 1 [ f ] = 0 H 2 [ f ] = x 2 • 2 + x 1 x 3 22

  43. Newton iteration (Sloppy Hensel Lifting) Goal : H ≤ i [ h i ] = H ≤ i [ f ] . Def : (Homogeneous components) The degree i homogeneous component is the collection of monomials of degree i . f ( x 1 , x 2 , x 3 ) = x 3 1 x 2 + x 1 x 2 x 3 + x 2 2 + x 1 x 3 + x 4 Example : 3 • H 0 [ f ] = 0 • H 1 [ f ] = 0 H 2 [ f ] = x 2 • 2 + x 1 x 3 • H 3 [ f ] = x 1 x 2 x 3 22

  44. Newton iteration (Sloppy Hensel Lifting) Goal : H ≤ i [ h i ] = H ≤ i [ f ] . Def : (Homogeneous components) The degree i homogeneous component is the collection of monomials of degree i . f ( x 1 , x 2 , x 3 ) = x 3 1 x 2 + x 1 x 2 x 3 + x 2 2 + x 1 x 3 + x 4 Example : 3 • H 0 [ f ] = 0 • H 1 [ f ] = 0 H 2 [ f ] = x 2 • 2 + x 1 x 3 • H 3 [ f ] = x 1 x 2 x 3 H 4 [ f ] = x 3 1 x 2 + x 4 • 3 22

  45. Newton iteration (Sloppy Hensel Lifting) Goal : H ≤ i [ h i ] = H ≤ i [ f ] . 22

  46. Newton iteration (Sloppy Hensel Lifting) Goal : H ≤ i [ h i ] = H ≤ i [ f ] . h i = h i − 1 − H i [ P ( z , h i − 1 ( z ))] Update : . δ 22

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend