topological charge of elementary excitations in lieb
play

Topological Charge of Elementary Excitations in Lieb-Liniger Model - PowerPoint PPT Presentation

Topological Charge of Elementary Excitations in Lieb-Liniger Model Vladimir Korepin Prepared by: You Quan Chong Department of Physics and Astronomy Stony Brook University Lieb-Liniger PBC Thermodynamic limit Excitations Fermionization


  1. Topological Charge of Elementary Excitations in Lieb-Liniger Model Vladimir Korepin Prepared by: You Quan Chong Department of Physics and Astronomy Stony Brook University

  2. Lieb-Liniger PBC Thermodynamic limit Excitations Fermionization Excitations Outline 1 Lieb-Liniger model 2 Periodic boundary conditions 3 Thermodynamic limit at zero temperature 4 Excitations at zero temperature 5 Fermionization 6 Excitations at finite temperature

  3. Lieb-Liniger PBC Thermodynamic limit Excitations Fermionization Excitations Outline 1 Lieb-Liniger model 2 Periodic boundary conditions 3 Thermodynamic limit at zero temperature 4 Excitations at zero temperature 5 Fermionization 6 Excitations at finite temperature

  4. Lieb-Liniger PBC Thermodynamic limit Excitations Fermionization Excitations Lieb-Liniger model Hamiltonian � � � ∂ x Ψ † ( x ) ∂ x Ψ( x ) + c Ψ † ( x )Ψ † ( x )Ψ( x )Ψ( x ) H = dx Canonical equal-time commutation relations: [Ψ( x, t ) , Ψ † ( y, t )] = δ ( x − y ) [Ψ( x, t ) , Ψ( y, t )] = [Ψ † ( x, t ) , Ψ † ( y, t )] = 0 Heisenberg equation of motion i∂ t Ψ = − ∂ 2 x Ψ + 2 c Ψ † ΨΨ

  5. Lieb-Liniger PBC Thermodynamic limit Excitations Fermionization Excitations Eigenfunctions Eigenfunctions 1 � d N z χ N ( z 1 , . . . , z N | λ 1 , . . . , λ N )Ψ † ( z 1 ) . . . Ψ † ( z N ) | 0 � | ψ N ( λ 1 , . . . , λ N ) � = √ N ! H | ψ N � = E N | ψ N � where χ N is a symmetric function of all z j . Quantum mechanical Hamiltonian N � � − ∂ 2 � � H N = + 2 c δ ( z j − z k ) , c > 0 ∂z 2 j j =1 N ≥ j>k ≥ 1 H N χ N = E N χ N

  6. Lieb-Liniger PBC Thermodynamic limit Excitations Fermionization Excitations χ N − 1 / 2    [( λ j − λ k ) 2 + c 2 ]  � χ N =  N !  j>k N � � � ( − 1) [ P ] exp � � i z n λ P n [ λ P j − λ P k − icǫ ( z j − z k )] P n =1 j>k   N ( N − 1) � N � = ( − i ) 2   ( − 1) [ P ] exp � � � √ ǫ ( z j − z k ) i z k λ P k N !   N ≥ j>k ≥ 1 P k =1   i   � × exp ǫ ( z j − z k ) θ ( λ P j − λ P k ) 2  N ≥ j>k ≥ 1  � � ic + λ − µ x where θ ( λ − µ ) = i ln ; ǫ ( x ) = ic − λ + µ | x | χ N is antisymmetric in momenta (Pauli principle in momentum space) χ N ( z 1 , . . . , z N | λ 1 , . . . , λ j , . . . , λ k , . . . , λ N ) = − χ N ( z 1 , . . . , z N | λ 1 , . . . , λ k , . . . , λ j , . . . , λ N )

  7. Lieb-Liniger PBC Thermodynamic limit Excitations Fermionization Excitations χ N Normalization � ∞ N d N z χ ∗ N ( z 1 , . . . , z N | λ 1 , . . . , λ N ) χ N ( z 1 , . . . , z N | µ 1 , . . . , µ N ) = (2 π ) N � δ ( λ j − µ j ) −∞ j =1 where the momenta { λ } and { µ } are ordered: λ 1 < λ 2 < . . . < λ N , µ 1 < µ 2 < . . . < µ N Completeness � ∞ N d N λ χ ∗ N ( z 1 , . . . , z N | λ 1 , . . . , λ N ) χ N ( y 1 , . . . , y N | λ 1 , . . . , λ N ) = (2 π ) N � δ ( z j − y j ) −∞ j =1 where the coordinates { z } and { y } are ordered: z 1 < z 2 < . . . < z N , y 1 < y 2 < . . . < y N Energy, E N = � N j =1 λ 2 j Momentum, P N = � N j =1 λ j

  8. Lieb-Liniger PBC Thermodynamic limit Excitations Fermionization Excitations Outline 1 Lieb-Liniger model 2 Periodic boundary conditions 3 Thermodynamic limit at zero temperature 4 Excitations at zero temperature 5 Fermionization 6 Excitations at finite temperature

  9. Lieb-Liniger PBC Thermodynamic limit Excitations Fermionization Excitations Periodic boundary conditions Traditionally, we have a periodic wave function: χ N ( z 1 , . . . , z j + L, . . . , z N | λ 1 , . . . , λ N ) = χ N ( z 1 , . . . , z j , . . . , z N | λ 1 , . . . , λ N ) Bethe equations N λ j − λ k + ic � exp { iλ j L } = − λ j − λ k − ic , j = 1 , . . . , N (1) k =1 Log form of Bethe equations ψ j = 2 π ˜ j = 1 , . . . , N (2) n j , where ˜ n j are integers, and N � ψ j = Lλ j + ψ ( λ j − λ k ) k =1 k � = j � λ + ic � ψ = i ln ; − 2 π < ψ ( λ ) < 0 , Im λ = 0 λ − ic

  10. Lieb-Liniger PBC Thermodynamic limit Excitations Fermionization Excitations Periodic boundary conditions Using the antisymmetric θ ( λ ) instead of ψ ( λ ), θ ( λ ) = ψ ( λ ) + π ; θ ( λ ) = − θ ( − λ ) � ic + λ � θ ( λ ) = i ln ic − λ The Bethe equations become N � Lλ j + θ ( λ j − λ k ) = 2 πn j (3) k =1 where n j + N − 1 n j = ˜ 2 and they can be integers (N odd) or half-integers (N even)

  11. Lieb-Liniger PBC Thermodynamic limit Excitations Fermionization Excitations Existence of solutions to Bethe equations Theorem: Solutions to the Bethe equations (3) exist and can be uniquely parameterized by { n j } Proof: Yang-Yang action: N N N S = 1 n j λ j + 1 � λ 2 � � j − 2 π θ 1 ( λ j − λ k ) 2 L 2 j =1 j =1 j,k � λ where θ 1 ( λ ) = 0 θ ( µ ) dµ Extremum conditions (minima) for S give the Bethe equations (3) : ∂S = 0 ∂λ j

  12. Lieb-Liniger PBC Thermodynamic limit Excitations Fermionization Excitations Existence of solutions to Bethe equations Consider � N � ∂ 2 S = ∂ψ j � = ψ ′ jl = δ jl L + K ( λ j , λ m ) − K ( λ j , λ l ) ∂λ j ∂λ l ∂λ l m =1 where 2 c K ( λ, µ ) = ψ ′ ( λ − µ ) = θ ′ ( λ − µ ) = c 2 + ( λ − µ ) 2 So, the Yang-Yang action is convex: N N N ∂ 2 S K ( λ j , λ l )( v j − v l ) 2 ≥ L � � Lv 2 � � v 2 v j v l = j + j > 0 , ∂λ j ∂λ l j,l j =1 j>l =1 j =1 which means that solutions to Bethe equations exist and are unique. If the wavefunction is non-zero, then the Bethe equations are non-degenerate: � ∂ψ j � L ∂ 2 S � � � d N z | χ N | 2 = det = det ∂λ j ∂λ l ∂λ l 0

  13. Lieb-Liniger PBC Thermodynamic limit Excitations Fermionization Excitations Outline 1 Lieb-Liniger model 2 Periodic boundary conditions 3 Thermodynamic limit at zero temperature 4 Excitations at zero temperature 5 Fermionization 6 Excitations at finite temperature

  14. Lieb-Liniger PBC Thermodynamic limit Excitations Fermionization Excitations Preliminaries To pass to the thermodynamic limit, we need: λ j ’s are separated by some interval 2 π ( n j − n k ) ≥ | λ j − λ k | ≥ 2 π ( n j − n k ) 2 π ≥ ; j � = k L (1 + 2 D L (1 + 2 D L c ) c ) where density D = N/L N � λ 2 Energy j is minimized under the condition that { λ j } j =1 satisfy the Bethe equations, given that � N − 1 � n j = − + j − 1 , j = 1 , . . . , N 2

  15. Lieb-Liniger PBC Thermodynamic limit Excitations Fermionization Excitations Some remarks at c = + ∞ At c = + ∞ , the Bethe equations become e iLλ j = ( − 1) N +1 or in log form Lλ j = 2 π ˜ ˜ n j where ˜ ˜ n j can be integers (N odd) or half-integers (N even) We get a non-interacting, free fermion model (due to Pauli principle) for c = + ∞ , with N N j = 2 π � λ 2 � ˜ n 2 E = ˜ j L j =1 j =1 N N λ j = 2 π � � ˜ P = ˜ n j L j =1 j =1

  16. Lieb-Liniger PBC Thermodynamic limit Excitations Fermionization Excitations Thermodynamic limit at zero temperature Thermodynamic limit: D = N N → ∞ ; L → ∞ ; L = const. Bethe equation of ground state (lowest energy): � N + 1 N � �� � Lλ j + θ ( λ j − λ k ) = 2 π j − , j = 1 , . . . , N 2 k =1 We define the density of particles in momentum space: 1 ρ ( λ k ) = lim L ( λ k +1 − λ k ) > 0 Integral equation for ρ ( λ ) (Lieb-Liniger equation) � q ρ ( λ ) − 1 K ( λ, µ ) ρ ( µ ) dµ = 1 2 π 2 π − q And � q D = N L = ρ ( λ ) dλ − q

  17. Lieb-Liniger PBC Thermodynamic limit Excitations Fermionization Excitations Energy Let the ground state at T = 0 be | Ω � Microcanonical ensemble: � q � Ω | H | Ω � λ 2 ρ ( λ ) dλ = E L = L � Ω | Ω � − q Grand canonical ensemble: Let H h = H − hQ � Ψ † ( x )Ψ( x ) dx where Q = Energy N E h � ( λ 2 N = j − h ) j =1

  18. Lieb-Liniger PBC Thermodynamic limit Excitations Fermionization Excitations Outline 1 Lieb-Liniger model 2 Periodic boundary conditions 3 Thermodynamic limit at zero temperature 4 Excitations at zero temperature 5 Fermionization 6 Excitations at finite temperature

  19. Lieb-Liniger PBC Thermodynamic limit Excitations Fermionization Excitations Excitations We start with periodic boundary conditions (3): N � Lλ j + θ ( λ j − λ k ) = 2 πn j k =1 We define the “shift function” F : ( λ j − ˜ λ j ) F ( λ j | λ p , λ h ) ≡ ( λ j +1 − λ j ) . satisfying the following integral equation: � q dν 2 π K ( µ, ν ) F ( ν | λ p , λ h ) = θ ( µ − λ p ) − θ ( µ − λ h ) F ( λ j | λ p , λ h ) − 2 π − q

  20. Lieb-Liniger PBC Thermodynamic limit Excitations Fermionization Excitations One particle + one hole We consider excitations consisting of a particle and a hole Observable energy (particle + hole): ∆ E ( λ p , λ h ) = E excited ( λ p , λ h ) − E gs � [ ε 0 (˜ = ε 0 ( λ p ) − ε 0 ( λ h ) + λ j ) − ε 0 ( λ j )] j � q ε ′ = ε 0 ( λ p ) − ε 0 ( λ h ) − 0 ( µ ) F ( µ | λ p , λ h ) dµ − q Observable momentum (particle + hole) ∆ P ( λ p , λ h ) = P excited ( λ p , λ h ) − P gs � q = λ p − λ h − F ( µ | λ p , λ h ) dµ − q � q = λ p − λ h + [ θ ( λ p − µ ) − θ ( λ h − µ )] ρ ( µ ) dµ − q

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend