topics
play

Topics Hydrolysis Aquo metal ion gives rise to hydroxo complexes - PDF document

CEE 680 Lecture #35 3/30/2020 Print version Updated: 30 March 2020 Lecture #35 Precipitation and Dissolution: Iron Hydroxides (Stumm & Morgan, Chapt.7) Benjamin; Chapter 8.7 8.15 David Reckhow CEE 680 #35 1 Topics Hydrolysis


  1. CEE 680 Lecture #35 3/30/2020 Print version Updated: 30 March 2020 Lecture #35 Precipitation and Dissolution: Iron Hydroxides (Stumm & Morgan, Chapt.7) Benjamin; Chapter 8.7 ‐ 8.15 David Reckhow CEE 680 #35 1 Topics  Hydrolysis  Aquo metal ion gives rise to hydroxo complexes  Iron Hydroxide solubility  Other metals David Reckhow CEE 680 #35 2 1

  2. CEE 680 Lecture #35 3/30/2020 Secondary Drinking Water standards  From EPA website David Reckhow CEE 680 #35 3 Concentration of inorganics in fresh water From: Stumm & Morgan, 1996; Benjamin, 2002; fig 1.1 David Reckhow CEE 680 #35 4 2

  3. CEE 680 Lecture #35 3/30/2020 Ferrous Hydroxide I  Thermodynamics Benjamin  Fe(OH) 2 (s) = Fe +2 + 2OH ‐ K so = 10 ‐ 15.1 -15.9  Fe +2 + OH ‐ = FeOH + K 1 = 10 4.5  Fe +2 + 3OH ‐ = Fe(OH) 3 ‐ K 2 = 10 11.0  Mass Balance  Fe T = [Fe +2 ] + [FeOH + ] + [Fe(OH) 3 ‐ ] Constants from Stumm & Morgan, 1996; identical to those from Morel & Hering, 1993 David Reckhow CEE 680 #35 5 Ferrous Hydroxide II  Log C vs pH relationships  Log [Fe +2 ] = 12.9 – 2pH  Log [FeOH + ] = 3.4 – pH ‐ ] = ‐ 18 + pH  Log [Fe(OH) 3 Based on: Constants from Stumm & Morgan, 1996; identical to those from Morel & Hering, 1993 David Reckhow CEE 680 #35 6 3

  4. CEE 680 Lecture #35 3/30/2020 Ferrous Hydroxide III  Tableaux Components Species Fe(OH)2 (s H+ Log K Fe+2 1 2 13.3 Log[ Fe+2 ] = 13.3 -2 pH FeOH+ 1 1 4.6 Log[ FeOH+ ] = 4.6 -1 pH Log[ Fe(OH)3- ] = -19.08 1 pH Fe(OH)3- 1 -1 -19.08 H+ 0 1 0 OH- 0 -1 -14 Log(conc.) 0 David Reckhow CEE 680 #35 7 0 -1 OH - H + -2 -3 -4 -5 -6 Log C -7 -8 -9 -10 -11 -12 -13 -14 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 pH David Reckhow CEE 680 #35 8 4

  5. CEE 680 Lecture #35 3/30/2020 0 Fe +2 -1 Fe Total -2 H + -3 Fe(OH) + -4 -5 -6 Log C -7 -8 -9 - Fe(OH) 3 -10 Based on: OH - Constants from -11 Stumm & -12 Morgan, 1996; identical to -13 those from Morel & -14 Hering, 1993 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 pH David Reckhow CEE 680 #35 9 0 Fe +2 -1 Fe Total -2 H + -3 Fe(OH) + -4 -5 OH - -6 Log C -7 -8  Log [Fe +2 ] = 13.5 – 2pH  Log [FeOH + ] = 4.6 – pH -9 - Fe(OH) 3  Log [Fe(OH) 3 -10 ‐ ] = ‐ 19.1 + pH -11 Based on: -12 Constants from -13 Snoeyink & Jenkins, 1980 -14 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 pH David Reckhow CEE 680 #35 10 5

  6. CEE 680 Lecture #35 3/30/2020 Trivalent Metal Hydrolysis  Case for iron + 2H + + H + Fe(H 2 O) 6 +3 FeOH(H 2 O) 5 +2 Fe(OH) 2 (H 2 O) 4 + + 3H + + 4H + Fe(OH) 3 (H 2 O) 3 Fe(OH) 4 (H 2 O) 2 - Fe(OH) 3 (s) David Reckhow CEE 680 #35 11 Ferric Hydroxide I  Thermodynamics  Fe(OH) 3 (s) = Fe +3 + 3OH ‐ K so = 10 ‐ 38.8  FeOH +2 = Fe +3 + OH ‐ K 1 = 10 ‐ 11.8 + = FeOH +2 + OH ‐ K 2 = 10 ‐ 10.5  Fe(OH) 2 ‐ = Fe(OH) 2 + + 2OH ‐ K 3 = 10 ‐ 12.1  Fe(OH) 4 +4 = 2Fe +3 + 2OH ‐ K 22 = 10 ‐ 25.05  Fe 2 (OH) 2  Mass Balance  Fe T = [Fe +3 ] + [FeOH +2 ] + [Fe(OH) 2 + ] + [Fe(OH) 4 ‐ ] + +4 ] [Fe 2 (OH) 2 David Reckhow CEE 680 #35 12 6

  7. CEE 680 Lecture #35 3/30/2020 Ferric Hydroxide II  Log C vs pH relationships  Log [Fe +3 ] = 3.2 – 3pH  Log [FeOH +2 ] = 1.0 – 2pH + ] = ‐ 2.5 – pH  Log [Fe(OH) 2  Log [Fe(OH) 4 ‐ ] = ‐ 18.4 + pH  Log [Fe 2 (OH) 2 +4 ] = 3.45 – 4pH David Reckhow CEE 680 #35 13 0 -1 OH - H + -2 -3 -4 -5 -6 Fe Total Log C -7 - +4 Fe 2 (OH) 2 Fe(OH) 4 Fe +3 -8 -9 -10 FeOH +2 -11 + Fe(OH) 2 -12 -13 -14 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 pH David Reckhow CEE 680 #35 14 7

  8. CEE 680 Lecture #35 3/30/2020 Ferric Hydroxide IV 1.2 - Fe(OH) 4 + Fe(OH) 2 1.0 Fe +3 0.8 FeOH +2  0.6 0.4 +4 Fe 2 (OH) 2 0.2 0.0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 David Reckhow CEE 680 #35 15 pH 0 -1 Mg +2 Magnesium Mg Total -2 H + -3 Mg(OH) - -4 -5 -6 OH - Log C -7 -8 Divalent Alkaline Earth -9 -10 -11 -12 -13 -14 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 pH David Reckhow CEE 680 #34 16 8

  9. CEE 680 Lecture #35 3/30/2020 0 Fe +2 -1 Fe Total Ferrous ‐ Fe -2 H + -3 Fe(OH) + -4 -5 OH - -6 Log C -7 -8  Divalent Transition Metal -9 - Fe(OH) 3 -10 -11 Based on: -12 Constants from -13 Snoeyink & Jenkins, 1980 -14 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 pH David Reckhow CEE 680 #35 17 0 -1 OH - H + Ferric ‐ Fe -2 -3 -4 -5 -6 Fe Total Log C -7 - +4 Fe 2 (OH) 2 Fe(OH) 4 Fe +3  Trivalent Transition Metal -8  Optimal pH for ferric -9 coagulation -10 FeOH +2  5.0 to 6s for most -11 waters + Fe(OH) 2 -12  5.0 ‐ 5.5 for high DOC waters -13 -14 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 pH David Reckhow CEE 680 #35 18 9

  10. CEE 680 Lecture #35 3/30/2020 Summary  Multiple metals From: Boardman et al., 2004, Geotechnique 54:7:467-486 David Reckhow CEE 680 #35 19 Summary II  das Cravotta 2008, Applied Geochemistry, 23:203-26 David Reckhow CEE 680 #35 20 10

  11. CEE 680 Lecture #35 3/30/2020 Hemoglobin  One essential use of iron  Electron transfer in the heme, forming superoxide ion that binds with the ferric  Fe(II) + O 2  Fe(III) ‐ O 2 ‐ By Zephyris at the English language Wikipedia, CC BY-SA 3.0, David Reckhow CEE 680 #35 21 https://commons.wikimedia.org/w/index.php?curid=2300973 Siderophores  Mining Iron for Bacteria Saha et al., 2016 David Reckhow CEE 680 #35 22 11

  12. CEE 680 Lecture #35 3/30/2020 Siderophores  Fighting for Iron between host cells and bacteria Wilson et al., 2016 David Reckhow CEE 680 #35 23 Siderophores  Ligand Atoms and immediate environment Wilson et al., 2016 David Reckhow CEE 680 #35 24 12

  13. CEE 680 Lecture #35 3/30/2020 Siderophores  Full Molecules Wilson et al., 2016 David Reckhow CEE 680 #35 25  To next lecture David Reckhow CEE 680 #35 26 13

  14. CEE 680 Lecture #35 3/30/2020 Charge Balance & Alk  Major Cation Charge = Major Anion Charge Na + + K + + 2Ca +2 + 2Mg +2 Cl - + NO 3 - + 2 SO 4 C A -2 C B = - + 2 CO 3 -2 +OH - + H + + HCO 3  And simplifying: - + 2 CO 3 -2 + OH - - H + C B – C A = HCO 3  Alkalinity  Now combining with equilibria C B – C A  Alk  ( α 1 +2 α 2 )C T + K w /[H + ] - H + David Reckhow CEE 680 #35 27 𝐵𝑚𝑙 ����� � ∑ 𝑅 � 𝐵𝑚𝑙 � Closed & Open ∑ 𝑅 �  Closed system  Open System  Most common, especially in  Requires full equilibrium with bulk atmosphere or large volume of headspace treatment systems C T is fixed (from mass balance) H 2 CO 3 is fixed (from fixed pCO2) Alkalinity is fixed or “conservative” (from mass balance) Calculate pH (and other carbonate species) David Reckhow CEE 680 #35 28 14

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend