topics in brain computer interfaces topics in brain
play

Topics in Brain Computer Interfaces Topics in Brain Computer - PowerPoint PPT Presentation

Topics in Brain Computer Interfaces Topics in Brain Computer Interfaces CS295- -7 7 CS295 Professor: M ICHAEL B LACK TA: F RANK W OOD Spring 2005 Probabilistic Inference Michael J. Black - CS295-7 2005 Brown University Brown University


  1. Topics in Brain Computer Interfaces Topics in Brain Computer Interfaces CS295- -7 7 CS295 Professor: M ICHAEL B LACK TA: F RANK W OOD Spring 2005 Probabilistic Inference Michael J. Black - CS295-7 2005 Brown University

  2. Brown University Reza Shadmehr Michael J. Black - CS295-7 2005

  3. Reza Shadmehr After 300 trails Forces used “Catch” trails to counter field. Michael J. Black - CS295-7 2005 Brown University

  4. Brown University Kinarm Michael J. Black - CS295-7 2005

  5. Kinarm project • Connect Kinarm with TG2 game software (partially done). • Calibrate Kinarm (partially done) • Develop a high-level way of programming different force fields (not done). • Develop a basic set of fields. Michael J. Black - CS295-7 2005 Brown University

  6. Encoding Review Moran & Schwartz (’99): = + θ + θ ( cos( ) sin( )) z h speed h h 0 k x k y k = + + ( Linear in velocity ) h h v h v 0 x x y y k k v v y y v v x x Michael J. Black - CS295-7 2005 Brown University

  7. Encoding Review Kettner et al (’88): = + + z b b x b y ( Linear in position ) 0 k x k y k y y x x Flament et al (‘88): Firing rate is also related to hand acceleration Michael J. Black - CS295-7 2005 Brown University

  8. Notation ⎡ ⎤ x Firing rates of n cells at time k k ⎢ ⎥ y ⎡ ⎤ z ⎢ ⎥ k 1 , k ⎢ ⎥ ⎢ ⎥ Hand kinematics v z v , v x k ⎢ ⎥ = at time k ⎢ ⎥ = 2 , k x z ⎢ ⎥ v k k M ⎢ ⎥ , y k ⎢ ⎥ ⎢ ⎥ a z ⎣ ⎦ ⎢ , ⎥ x k , n k ⎢ ⎥ a ⎣ ⎦ v , v v v y k = K ( , , , ) Z z z z − v 1 1 k k k v v v = K ( , , , ) X x x x − 1 1 k k k Michael J. Black - CS295-7 2005 Brown University

  9. Decoding Methods Direct decoding methods: v v v = ( , ,...) x f z z − 1 k k k Simple linear regression method v v = T x f Z 1 v − : k k k d v = T y f Z − 2 : k k k d Michael J. Black - CS295-7 2005 Brown University

  10. Decoding Methods Direct decoding methods: v v v = ( , ,...) x f z z − 1 k k k In contrast to generative encoding models: v = v ( ) z f x k k Need a sound way to exploit generative models for decoding. Michael J. Black - CS295-7 2005 Brown University

  11. Uncertainty Typically there will be uncertainty in our models v v = + ( ) noise z f x k k This defines the likelihood of the observations given the state: v v ( | ) p z k x k But we want to estimate something about the state x given noisy measurements z v v v v v = ( | ) ( | ,..., ) p x Z p x z z − − 1 t t j t t j Michael J. Black - CS295-7 2005 Brown University

  12. Probability Review Probability a a a a a a a 3 5 6 7 1 2 4 Let X be a random variable that can take on one of the discrete values ∈ K [ , , ] X a a 1 7 Michael J. Black - CS295-7 2005 Brown University

  13. Basic facts Probability a a a a a a a 3 5 6 7 1 2 4 = ( ) or just ( ) p X a p a i i ≤ = ≤ 0 ( ) 1 p X a i 7 ∑ = ( ) 1 p a i = 1 i Michael J. Black - CS295-7 2005 Brown University

  14. Basic facts Probability a a a a a a a 3 5 6 7 1 2 4 Expected value or expectation of a random variable ∑ µ = = [ ] ( ) E x p x x ? x ∑ σ = = − = − µ 2 2 2 var[ ] [( ( )) ] ( ) ( ) x E x E x x p x x Michael J. Black - CS295-7 2005 Brown University

  15. Joint Probability = = = ( , ) ( , ) p X a X a p a a 1 1 , 2 2 , 1 , 2 , i j i j ∑∑ = ( , ) 1 p a i a 1 , 2 , j a a 1 , 2 , i j Statistical independence = ( , ) ( ) ( ) p x y p x p y - knowing y tells you nothing about x Michael J. Black - CS295-7 2005 Brown University

  16. Conditional Probability Dependence - Knowing the value of one random variable tells us something about the other. ( , ) p A B = ( | ) p A B ( ) p B = ( | ) ( ) ( , ) p A B p B p A B Michael J. Black - CS295-7 2005 Brown University

  17. Statistical Independence ( , ) ( ) ( ) p A B p A p B = ? = = ( | ) ( ) p A B p A ( ) ( ) p B p B If A and B are statistically independent? Michael J. Black - CS295-7 2005 Brown University

  18. Statistical Independence ( , ) ( ) ( ) p A B p A p B = = = ( | ) ( ) p A B p A ( ) ( ) p B p B A and B are statistically independent if and only if = = ( , ) ( | ) ( ) ( ) ( ) p A B p A B p B p A p B = ( | ) ( ) p A B p A = ( | ) ( ) p B A p B Michael J. Black - CS295-7 2005 Brown University

  19. Conditional Independence A is independent of B, conditioned on C = ( , , ) ( , | ) ( ) p A B C p A B C p C = ( | ) ( | ) ( ) p A C p B C p C If I know C , then knowing B doesn’t give me any more information about A . This does not mean that A and B are statistically independent Michael J. Black - CS295-7 2005 Brown University

  20. More generally = ( , | ) ( | , ) ( | ) p A B C p A B C p B C Marginalizing over a random variable ∑ ∑ = = ( | ) ( , | ) ( | , ) ( | ) p A C p A B C p A B C p B C B B Michael J. Black - CS295-7 2005 Brown University

  21. Bayes’ Theorem = = ( , ) ( | ) ( ) ( | ) ( ) p A B p A B p B p B A p A ( | ) ( ) p B A p A = ( | ) p A B ( ) p B Revd. Thomas Bayes, 1701-1761 Michael J. Black - CS295-7 2005 Brown University

  22. Bayesian Inference Likelihood Prior ( a priori – (evidence) before the evidence) Posterior ( firing | kinematics ) ( kinematics ) p p = ( kinematics | firing ) p ( firing ) p a posteriori probability normalization constant (after the evidence) (independent of mouth) We infer hand kinematics from uncertain evidence and our prior knowledge of how hands move. Michael J. Black - CS295-7 2005 Brown University

  23. G ENERATIVE M ODEL linear, non-linear? Encoding: noise (e.g. v v v = + Normal or ( ) z f x q 1 Poisson) k k k v v v = + ( − ) x f x w 2 1 k k k neural firing rate of N=42 cells in M=70ms behavior (e.g. hand position, velocity, acceleration) Michael J. Black - CS295-7 2005 Brown University

  24. “cell 8” … “cell 18” … Michael J. Black - CS295-7 2005 Brown University

  25. v v = + z H x noise t t … … Michael J. Black - CS295-7 2005 Brown University

  26. v v = + z H x noise t t ⎡ ⎤ ⎡ ⎤ η ⎡ ⎤ L h h h x ⎡ ⎤ 1 , 1 , 1 , x y a t 1 z ⎢ ⎥ ⎢ ⎥ y ⎢ ⎥ 1 , t η L ⎢ ⎥ h h h y ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ 2 , 2 , 2 , = x y a + t 2 M y ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ M M M ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ z ⎣ ⎦ … η , n t L ⎢ ⎥ ⎢ h h h ⎥ ⎣ ⎦ a ⎣ ⎦ ⎣ ⎦ , , , n x n y n a y , t n y … Michael J. Black - CS295-7 2005 Brown University

  27. G ENERATIVE M ODEL ⎛ ⎞ x ⎜ ⎟ k ⎜ ⎟ system y Observation Equation: k ⎜ ⎟ state v ⎜ ⎟ x vector ⎛ ⎞ k firing 1 z ⎜ ⎟ ⎜ ⎟ − v k j (zero rate y ⎜ ⎟ k ⎜ ⎟ 2 z − mean) a k j ⎜ ⎟ vector ⎜ ⎟ v v v x k M ⎜ ⎟ ⎜ ⎟ = + (zero a ⎝ ⎠ z H x q ⎜ ⎟ y 42 k z mean, ⎝ ⎠ − − k j k k k j sqrt) 42 X 6 matrix Michael J. Black - CS295-7 2005 Brown University

  28. Assumption Gaussian distribution: v v ~ ( , ) z N H x Q k k v v v − = ~ ( 0 , ) z H x q N Q k k k Recall: 2 σ 1 1 = − − µ 2 ( ) exp( ( ) / ) p x x π σ 2 2 Michael J. Black - CS295-7 2005 Brown University

  29. Gaussian For a single cell: v 1 1 = − − + + + σ 2 2 L ( | ) exp( ( ( )) / ) p z x z h x h y h a , , , , , , i t t π σ i t i x t i y t i a y t 2 2 y What about multiple cells? If the firing rates are conditionally independent: n v v ∏ = K ( , , , | ) ( | ) p z z z x p z x 1 , 2 , , , t t n t t i t t = 1 i If we know x t , then the firing rates of the other cells tell us nothing more about z i,t Michael J. Black - CS295-7 2005 Brown University

  30. Covariance first moment ∑∑ σ = = − µ = − µ 2 2 v [ ] E [( )] ( ) ( , ) ar x x x p x y x x x x y second moment ∑∑ σ = − µ − µ = − µ − µ E [( )( )] ( )( ) ( , ) x y x y p x y xy x y x y x y µ ⎡ ⎤ ⎡ ⎤ v v x µ = = x ⎢ ⎥ ⎢ ⎥ x µ ⎣ ⎦ ⎣ ⎦ y y σ σ ⎡ ⎤ v v v v = − µ − µ = xx xy T ⎢ ⎥ E [( )( ) ] C x x σ σ ⎣ ⎦ yx yy Michael J. Black - CS295-7 2005 Brown University

  31. Covariance Multivariate Gaussian (Normal) ∆ Mahalanobis distance 2 ⎛ ⎞ v 1 1 v v v w − = − − µ − µ ⎜ ⎟ 1 T ( ) exp ( ) ( ) p x x C x π / 2 1 / 2 ⎝ ⎠ D ( 2 ) | | 2 C Michael J. Black - CS295-7 2005 Brown University

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend