top yukawa deviation in extra dimension
play

Top Yukawa Deviation in Extra Dimension ( ) ( ) ( ) - PowerPoint PPT Presentation

Top Yukawa Deviation in Extra Dimension ( ) ( ) ( ) arXiv:0904.3813 [hep-ph] Contents 1. Introduction 2. Bulk Higgs with Brane Potential 3. 4.


  1. ✝ � ✂ ☎ ✞ ✄ ✆ ✁ Top Yukawa Deviation in Extra Dimension ✟ ✠ ( ) ( ) ( ) arXiv:0904.3813 [hep-ph] Contents ✡ ☛ 1. Introduction ☞ 2. Bulk Higgs with Brane Potential 3. 4.

  2. � � ✁ ✁ ✄ ✂ 1. Introduction ☎ Large Hadron Collider (LHC) ! ✟ ✆ ✞ ✝ ✟ ✠ ⇓ ✟ ✠ [ (SM)] [ (BSM)] [ (BSM)]

  3. � � ✁ ✁ ✄ ✂ 1. Introduction ☎ Large Hadron Collider (LHC) ! ✟ ✆ ✞ ✝ ✟ ✠ ⇓ ✟ ✠ [ (SM)] ☛ [ (BSM)] [ (BSM)] ✂ ☛ ✆ ✞ ✁ � ✂ ✝ • • Brane localized

  4. � � ✁ ✁ ✄ ✂ 1. Introduction ☎ Large Hadron Collider (LHC) ! ✟ ✆ ✞ ✝ ✟ ✠ ⇓ ✟ ✠ [ (SM)] ☛ [ (BSM)] [ (BSM)] ✂ ☛ ✆ ✞ ✁ � ✂ ✝ • ✁ ✆ ✞ � ✂ ✠ ☞ ☛ � ✝ • Brane localized ✆ ✁ ✁ ✂ ✂ ✝ ☎ ☛ ☎ ☞ ✠ ✄ ✄ ✞ ✟ ✝ ☛ ✠ ✠ ✞ • Brane localized • ⇒ T op Y ukawa Deviation

  5. ✆ • • LHC ✟ ✂ ✝ ✡ ✝ ✞ ✠ ☛ ✆ ☞ ✄ � ✆ ✁ ☛ ☞ ✆ ☛ ✝ ✝ ☛ ✞ ✞ ✁ ☎ ☛ ✂ ✄ ✠ ☛ ✠ ✝ ✟ ✟ ☎ ☞ ☞ ☛ ✠ � ✟ ✆ ☞ ✝ ✁ ✠ � ✞ ✆ ☛ ☛ ☎ ✠ � ✞ ✠ � ✞ ✝ ☛

  6. T op Y ukawa Deviation ✆ • • LHC ✟ ✂ ✝ ✡ ✝ ✞ ✠ ☛ ✆ ☞ ✄ � ✆ ✁ ☛ ☞ ✆ ☛ ✝ ✝ ☛ ✞ ✞ ✁ ☎ ☛ ✂ ✄ ✠ ☛ ✠ ✝ ✟ ✟ ☎ ☞ ☞ ☛ ✠ � ✟ ✆ ☞ ✝ ✁ ✠ � ✞ ✆ ☛ ☛ ☎ ✠ � ✞ ✠ � ✞ ✝ ☛

  7. ✆ ✞ ✝ ☞ ☛ ✝ � ☛ ✆ ✞ ☎ ☛ ☛ ✝ ✁ ✂ ✄ ☎ ✁ ☎ � ✟ ✝ ✄ ✆ ☛ ☞ ✆ � ✝ ✞ ✠ ✠ ✠ ✞ ✝ ✟ ✟ ☛ ☞ � ✆ ✞ ☛ ✠ ✠ ✝ • LHC ✡ ✟ ✂ ✆ ✁ ☞ ☛ ☛ ☞ � ✠ ☛ ✠ ✞ • T op Y ukawa Deviation −L ( SM ) ⊃ m t ¯ tt + y t H ¯ tt + h.c. ✝ t ✆ ✞ ✟ ☛ ✝ ✝ ✂ � ✂ = y t v ¯ tt + y t H ¯ tt + h.c. y t = m t v = [ - ( y H ¯ tt )]

  8. ✆ ✞ ✝ ☞ ☛ ✝ � ☛ ✆ ✞ ☎ ☛ ☛ ✝ ✁ ✂ ✄ ☎ ✁ ☎ � ✟ ✝ ✄ ✆ ☛ ☞ ✆ � ✝ ✞ ✠ ✠ ✠ ✞ ✝ ✟ ✟ ☛ ☞ � ✆ ✞ ☛ ✠ ✠ ✝ • LHC ✡ ✟ ✂ ✆ ✁ ☞ ☛ ☛ ☞ � ✠ ☛ ✠ ✞ • T op Y ukawa Deviation −L ( SM ) ⊃ m t ¯ tt + y t H ¯ tt + h.c. ✝ t ✆ ✞ ✟ ☛ ✝ ✝ ✂ � ✂ = y t v ¯ tt + y t H ¯ tt + h.c. ✝ y t = m t ✆ ✞ ☎ ✝ ✄ ✂ v = [ - ( y H ¯ tt )] ✝ ✆ ✞ ✟ ☛ ✝ ✝ ✂ ✂ � [Non-standard ] y t = m t v � = [ - ( y H ¯ tt )] “ T op Y ukawa Deviation ”

  9. ✝ ☛ ✁ ✁ ☎ � � ✆ ✟ � ✝ � ✂ ✠ ✞ Top Yukawa deviation Top Yukawa deviation MSSM multi-Higgs doublet . MSSM: H u and H d √ −L ( MSSM ) ⊃ y t H 0 u ¯ t R t L + h.c. ⇒ y t = 2 m t /v u t � H 0 h 0 G 0 1 � �� � � � � � � �� v u cos α sin α u = √ + + iR β 0 H 0 H 0 A 0 v d − sin α cos α 2 d √ ⊃ y t cos α h 0 cos α h 0 2 m t −L ( MSSM ) ¯ ¯ √ tt + h.c. = √ tt + h.c. t v u 2 2 √ ⇒ y h 0 ¯ tt = ( 2 m t /v u ) cos α � = y t

  10. ✝ ☛ ✁ ✁ ☎ � � ✆ ✟ � ✝ � ✂ ✠ ✞ Top Yukawa deviation Top Yukawa deviation MSSM multi-Higgs doublet . MSSM: H u and H d √ −L ( MSSM ) ⊃ y t H 0 u ¯ t R t L + h.c. ⇒ y t = 2 m t /v u t � H 0 h 0 G 0 1 � �� � � � � � � �� v u cos α sin α u = √ + + iR β 0 H 0 H 0 A 0 v d − sin α cos α 2 d √ ⊃ y t cos α h 0 cos α h 0 2 m t −L ( MSSM ) ¯ ¯ √ tt + h.c. = √ tt + h.c. t v u 2 2 √ ✆ ✝ ✆ ✞ ✝ ⇒ y h 0 ¯ tt = ( 2 m t /v u ) cos α � = y t ✝ � ✄ [One-Higgs-doublet ] ✆ ✞ ✁ ✝ � ✂ ✄ • SO (5) × U (1) - Hosotani and Kobayashi, PLB 674 (2009) 192 ( ) • Brane-localized Haba, Oda and RT, arXiv:0904.3813 [hep-ph] ( )

  11. 2. Bulk Higgs with Brane Potential Haba, Oda and RT, arXiv:0904.3813 [hep-ph] � L � dy [ −| ∂ M Φ | 2 − V (Φ) d 4 x S = 0 − δ ( y − L ) V L (Φ) − δ ( y ) V 0 (Φ)] L : Compactification length V 0 (Φ) V (Φ) V L (Φ) y = 0 Φ( x, y ) y = L 4D y → z ≡ y − L 2

  12. 2. Bulk Higgs with Brane Potential Haba, Oda and RT, arXiv:0904.3813 [hep-ph] � + L/ 2 � dz [ −| ∂ M Φ | 2 − V (Φ) d 4 x S = − L/ 2 − δ ( z − L/ 2) V + (Φ) − δ ( z + L/ 2) V − (Φ)] L : Compactification length V − (Φ) V (Φ) V + (Φ) z = − L z = + L Φ( x, z ) 2 2 4D y → z ≡ y − L 2

  13. : V (Φ) = 0, Real Φ � + L/ 2 � dz [ − ( ∂ M Φ) 2 − δ ( z − L/ 2) V + (Φ) d 4 x S = − L/ 2 − δ ( z + L/ 2) V − (Φ)] V − (Φ) = V + (Φ) V − (Φ) V + (Φ) V − V + = λ = λ 4(Φ 2 − v 2 ) 2 4(Φ 2 − v 2 ) 2

  14. : V (Φ) = 0, Real Φ � + L/ 2 � dz [ − ( ∂ M Φ) 2 − δ ( z − L/ 2) V + (Φ) d 4 x S = − L/ 2 − δ ( z + L/ 2) V − (Φ)] V − (Φ) = V + (Φ) V − (Φ) V + (Φ) V − V + = λ = λ 4(Φ 2 − v 2 ) 2 4(Φ 2 − v 2 ) 2 Φ( x, z ) = Φ c ( x, z ) + φ ( x, z ) Kaluza-Klein ∂ 2 z Φ c ( z ) = 0 ∂ 2 z f n = − k 2 � n f n , φ ( x, z ) = f n ( z ) φ n ( x ) n =0 ± ∂ z Φ c + ∂V + � � � � � ± ∂ z + ∂ 2 V + � Φ=Φ c = 0 � � � ∂ Φ � f n ( z ) = 0 � � ∂ Φ 2 � � ( ± for z = ± L/ 2) � Φ=Φ c � z = ± L/ 2

  15. ✁ ✂ ✄ ☎ ☎ � ✁ ✂ ✄ ✆ ✝ ✞ ✟ ± ∂ z Φ c + ∂V + � ∂ 2 z Φ c ( z ) = 0 � Φ=Φ c = 0 ( ± for z = ± L/ 2) � ∂ Φ ✌ � ☞ ✍ ✑ ✠ ✡ ☛ ✎ ✏ �� � � � 2 A ± BL A ± BL � ⇒ Φ c ( z ) = A + Bz − v 2 ⇒ ± B + λ = 0 2 2 ⇒ Φ c ( z ) = v :

  16. ✁ ✂ ✄ ☎ ☎ � ✁ ✂ ✄ ✆ ✝ ✞ ✟ ± ∂ z Φ c + ∂V + � ∂ 2 z Φ c ( z ) = 0 � Φ=Φ c = 0 ( ± for z = ± L/ 2) � ∂ Φ ✌ � ☞ ✍ ✑ ✠ ✡ ☛ ✎ ✏ �� � � � 2 A ± BL A ± BL � ⇒ Φ c ( z ) = A + Bz − v 2 ⇒ ± B + λ = 0 ✁ � ✁ � ☞ ✂ ✝ ✂ � ✂ ✄ ☎ ✠ � 2 2 ⇒ Φ c ( z ) = v : • ✁ ☞ ✂ � ✂ ✠ � Φ c ( z ) = v . ✆ ✁ ✂ ✝ ✄ ☎ � ✝ ✠ • and/or V + (Φ) � = V − (Φ) ✟ ☎ ☛ ☛ ✝ ✟ ✁ ✝ ☛ � ✂ ✂ ✁ � ✂ ☛ ✝ ☞ ✁ ☛ ✄ ☎ ✠ ✠ ✄ • ( Z W ) ⇒V (Φ) ∼ 0 and V + (Φ) = V − (Φ)

  17. ✁ ✆ ✞ ✂ ✝ ☛ ✄ ☎ Kaluza-Klein ∂ 2 z f n ( z ) = − k 2 n f n ( z ) ⇒ f n ( z ) = α n cos( k n z ) + β n sin( k n z ) � � � � ± ∂ z + ∂ 2 V + � � f n ( z ) = 0 � � ∂ Φ 2 � � � Φ=Φ c � z = ± L/ 2 4 λv 2 � � k n L � : f n ( z ) = α n cos( k n z ) [KK even] k n ⇒ tan = − k n 2 4 λv 2 : f n ( z ) = β n sin( k n z ) [KK odd]

  18. ✁ ✆ ✞ ✂ ✝ ☛ ✄ ☎ Kaluza-Klein ∂ 2 z f n ( z ) = − k 2 n f n ( z ) ⇒ f n ( z ) = α n cos( k n z ) + β n sin( k n z ) � � � � ± ∂ z + ∂ 2 V + � � f n ( z ) = 0 � � ∂ Φ 2 � � � Φ=Φ c � z = ± L/ 2 4 λv 2 � � k n L � : f n ( z ) = α n cos( k n z ) [KK even] � � ✁ k n ⇒ tan = ✝ − k n ✂ � � 2 ✁ ✝ ✆ ✄ ✁ � � ✂ ✁ ☎ 4 λv 2 : f n ( z ) = β n sin( k n z ) [KK odd] ✟ ✝ ☞ � ☛ ✄ ✆ � ✄ ✠ � � ✁ KK z = ± L/ 2 V + = V − ± z accidental f n ( z ) = f n ( − z ) [even] f n ( z ) = − f n ( − z ) [odd] .

  19. ✁ ✆ ✞ ✂ ✝ ☛ ✄ ☎ � f n ( z ) = α n cos( k n z ) , β n sin( k n z ) = 4 λv 2 � � k n L k n , − k n tan 2 4 λv 2 Odd O � 5 O � 3 E 0 O � 1 E 2 E 4 Even E � 4 E � 2 Even E 0 O 1 O 3 O 5 � 3 Π � � 2 Π � 2 Π 3 Π 5 Π 3 Π 3 Π 5 Π Π Π �Π Π � 2 2 2 2 2 2 k n L � 2

  20. ✁ ✆ ✞ ✂ ✝ ☛ ✄ ☎ ✝ ✝ � � � � ✁ � � ✁ ✁ ✁ ✁ ✁ ✂ ✂ ✄ ☎ ✄ ☎ KK / KK / ( λ → 0) ( λ → ∞ ) + / n = 0 + / n = 0 � L � 2 L � 2 � L � 2 L � 2 − / n = 1 − / n = 1 ⇒ � L � 2 L � 2 � L � 2 L � 2 + / n = 2 + / n = 2 � L � 2 L � 2 � L � 2 L � 2 . . . . . .

  21. ✁ ✆ ✞ ✂ ✝ ☛ ✄ ☎ f n ( z )   � 1 0 mode    L       � 2 � nπ  � [ λ → 0] L cos L z n : even       �  2 � nπ  �  L sin L z n : odd �       � ( n +∆ n ) π �  � 2 � cos  z n : even    L � 1+ sin(( n +∆ n ) π )  L =  ( n +∆ n ) π [ λ ] � ( n +∆ n ) π � � 2  � sin z n : odd    L � 1 − sin(( n +∆ n ) π )   L    ( n +∆ n ) π     � � ( n +1) π �  2 L cos z n : even     L  [ˆ � ☛ ☛ ✁ ✟ ☛  ✠ � � ☎ ✠ λ → ∞ ]  �  � ( n +1) π � 2  L sin z n : odd    L   ∆ n k n nπ/L (0 < ∆ n < 1)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend