tools for supersymmetric phenomenology
play

Tools for Supersymmetric Phenomenology by Ben Allanach (University - PowerPoint PPT Presentation

Tools for Supersymmetric Phenomenology by Ben Allanach (University of Cambridge) Talk outline SPA project http://spa.desy.de/spa/ , http://www.ippp.dur.ac.uk/montecarlo/BSM/ Bestiary of public codes only: supposedly impartial


  1. Tools for Supersymmetric Phenomenology by Ben Allanach (University of Cambridge) Talk outline • SPA project http://spa.desy.de/spa/ , http://www.ippp.dur.ac.uk/montecarlo/BSM/ • Bestiary of public codes only: supposedly impartial • Predictions for the LHC: partial Tools for Supersymmetric Phenomenology: YETI 2008 B.C. Allanach – p.1/34

  2. MSSM Tools Theory BC Dark matter SUSY Spectrum calculator Input observables: MZ, mt, Indirect observables Decays EW/flavour etc Event generator Detector simulation SLHA: Skands et al , JHEP 0407 (2004) 036 , SLHA2 on here (NMSSM, RPV, FV, CPV), arXiv:0801.0045 Tools for Supersymmetric Phenomenology: YETI 2008 B.C. Allanach – p.2/34

  3. Spectrum and decays • ISASUSY decouples particles at the mass thresholds but misses some finite terms in the matching: re-sums log splittings. • SOFTSUSY , sPHENO , SUSPECT all catch the finite terms but do the splittings to leading log in RPC-MSSM. • CPsuperH , FeynHiggs do Higgs mass spectrum and decays with of CP violating MSSM • NMSPEC does the CNMSSM spectrum, NMHDECAY gives the decays widths etc • PYTHIA , ISASUSY , sPHENO and SusyHIT do decays of Higgs and SUSY particles in MSSM. Tools for Supersymmetric Phenomenology: YETI 2008 B.C. Allanach – p.3/34

  4. Web Page http://kraml.home.cern.ch/kraml/comparison/ BCA, S Kraml in hep-ph/0402295 Tools for Supersymmetric Phenomenology: YETI 2008 B.C. Allanach – p.4/34

  5. Matrix Element Generators • Feyn Arts/Feyn Calc • Additional hard jets cannot be modelled reliably using the parton shower - you need to simulate the matrix element. • SMADGRAPH , compHEP , calcHEP , GRACE do SUSY and more general models at tree level. 2 to 4 possible. BRIDGE can be used to remember spin information in the decays. • WHIZARD , SUSYGEN - polarisation included for e + e − • PROSPINO does NLO-QCD sparticle production q ˜ q ˜ Tools for Supersymmetric Phenomenology: YETI 2008 B.C. Allanach – p.5/34

  6. Event Generation • Can pass matrix-element generated events to event generators with the (original) Les Houches Accord • PYTHIA used extensively. Includes RPV. phase-space decays. ISAJET too. • HERWIG maintains spin info down cascade decays. RPV too. • SHERPA matches up ME with more standard event generation. • Shift toward C++ Tools for Supersymmetric Phenomenology: YETI 2008 B.C. Allanach – p.6/34

  7. SUSY Prediction of Ω h 2 • Assume relic in thermal equilibrium with n eq ∝ ( MT ) 3 / 2 exp ( − M/T ) . • Freeze-out with T f ∼ M f / 25 once interaction rate < expansion rate ( t eq critical) • microMEGAs uses calcHEP to automatically calculate relevant Feynman diagrams for some given model Lagrangian: flexible . susyBSG • darkSUSY , ISATOOLS has MSSM annihilation channels hard-coded. Much work on (in)- direct detection possibilities. Tools for Supersymmetric Phenomenology: YETI 2008 B.C. Allanach – p.7/34

  8. Constraints on SUSY Models CMSSM well-studied in literature: eg Ellis, Olive et al PLB565 (2003) 176; Roszkowski et al JHEP 0108 (2001) 024; Baltz, Gondolo, JHEP 0410 (2004) 052;... tan β = 10 , µ > 0 800 800 m h = 114 GeV 700 700 600 600 m 0 (GeV) m χ± = 104 GeV 500 500 400 400 300 300 200 200 100 100 0 0 100 100 200 200 300 300 400 400 500 500 600 600 700 700 800 800 900 900 1000 1000 m 1/2 (GeV) Tools for Supersymmetric Phenomenology: YETI 2008 B.C. Allanach – p.8/34

  9. b Observables CMSSM: Ellis, Heinemeyer, Olive, Weber, Weiglein, arXiv:0706.0652 BR ( B u → τν ) , ∆ M B s 14 1.4 12 1.2 BR(B u -> τ ν τ ): MSSM/SM 10 1.0 2 (today) 8 0.8 CMSSM, µ > 0, m t = 171.4 GeV tan β = 50, A 0 = 0 χ 6 0.6 CMSSM, µ > 0, m t = 171.4 GeV tan β = 50, A 0 = +m 1/2 tan β = 50, A 0 = 0 tan β = 50, A 0 = -m 1/2 4 0.4 tan β = 50, A 0 = +m 1/2 tan β = 50, A 0 = +2 m 1/2 tan β = 50, A 0 = -m 1/2 tan β = 50, A 0 = -2 m 1/2 2 0.2 tan β = 50, A 0 = +2 m 1/2 tan β = 50, A 0 = -2 m 1/2 0 0.0 0 200 400 600 800 1000 1200 1400 1600 1800 2000 200 400 600 800 1000 1200 1400 1600 1800 2000 m 1/2 [GeV] m 1/2 [GeV] Tools for Supersymmetric Phenomenology: YETI 2008 B.C. Allanach – p.9/34

  10. Fit Development • Typically done 2d scans with 2 σ exclusion regions, but in general we have α ( M Z ) , α s ( M Z ) , m t , m b , m 0 , M 1 / 2 , A 0 , tan β to vary • Effective 3d type scan done a which parameterises a 2d surface of central Ω h 2 • 4d scan b used the impressive Markov Chain Monte Carlo technique like in cosmology. • Combine likelihoods from all of the different measurements. a Ellis et al , arXiv:0706.0652 b Baltz, Gondolo, JHEP 0410 (2004) 052 Tools for Supersymmetric Phenomenology: YETI 2008 B.C. Allanach – p.10/34

  11. Markov-Chain Monte Carlo Metropolis-Hastings Markov chain sampling consists of list of parameter points x ( t ) and associated posterior probabilities p ( t ) . x ( t +1) , p ( t +1) r p(r) σ P = min ( p ( t +1) /p ( t ) , 1) x ( t ) , p ( t ) r Final density of x points ∝ p . Required number of points relatively insensitive to number of dimensions. Tools for Supersymmetric Phenomenology: YETI 2008 B.C. Allanach – p.11/34

  12. Implementation Input parameters are: m 0 , A 0 , M 1 / 2 , tan β , • m t = 171 . 4 ± 2 . 9 , m b ( m b ) = 4 . 24 ± 0 . 11 GeV, • α s ( M Z ) MS = 0 . 1176 ± 0 . 002 , α − 1 ( M Z ) MS = 127 . 918 ± 0 . 018 For the likelihood, we also use • Ω DM h 2 = 0 . 104 +0 . 0073 − 0 . 0128 micrOMEGAs • δ ( g − 2) µ / 2 = (22 ± 10) × 10 − 10 Stöckinger et al • BR [ b → sγ ] = (3 . 55 ± 0 . 38) × 10 − 4 susyBSG • sin 2 θ l w ( eff ) = 0 . 23153 ± 0 . 000175 • M W = 80 . 392 ± 0 . 031 GeV W Hollik, A Weber et al Tools for Supersymmetric Phenomenology: YETI 2008 B.C. Allanach – p.12/34

  13. Killer Inference for Susy METeorology BCA, Cranmer, Weber, Lester, arXiv:0705.0487 P/P(max) P/P(max) 4 4 1 1 0.9 3.5 3.5 0.8 0.8 3 3 0.7 m 0 (TeV) 2.5 m 0 (TeV) 2.5 0.6 0.6 2 2 0.5 1.5 1.5 0.4 0.4 1 1 0.3 0.5 0.5 0.2 0.2 0 0 0.1 0 0.5 1 1.5 2 0 0.5 1 1.5 2 0 0 M 1/2 (TeV) M 1/2 (TeV) http://users.hepforge.org/ ˜ allanach/benchmarks/kismet.html strong 1.2 (L/Lmax) 4 1 weak gaugino slepton Frequentist 0.9 3.5 1 0.8 3 L/L(max) 0.8 0.7 m 0 (TeV) 2.5 0.6 2 0.6 0.5 1.5 0.4 0.4 1 0.3 0.5 0.2 0.2 0 0.1 0 0 0.5 1 1.5 2 0 -6 -4 -2 0 2 4 6 M 1/2 (TeV) Tools for Supersymmetric Phenomenology: YETI 2008 B.C. Allanach – p.13/34 log 10 σ /fb

  14. Killer Inference for Susy METeorology BCA, Cranmer, Weber, Lester, arXiv:0705.0487 Bayesian 1 Bayesian 2 http://users.hepforge.org/ ˜ allanach/benchmarks/kismet.html strong 1.2 (L/Lmax) 4 1 weak gaugino slepton Frequentist 0.9 3.5 1 0.8 3 L/L(max) 0.8 0.7 m 0 (TeV) 2.5 0.6 2 0.6 0.5 1.5 0.4 0.4 1 0.3 0.5 0.2 0.2 0 0.1 0 0 0.5 1 1.5 2 0 -6 -4 -2 0 2 4 6 M 1/2 (TeV) Tools for Supersymmetric Phenomenology: YETI 2008 B.C. Allanach – p.13/34 log 10 σ /fb

  15. Higgs Meteorology BCA, Cranmer, Lester, Weber arXiv:0705:0487 4 4 0.08 w=1 w=2 3.5 3.5 0.07 profile 0.06 3 3 Buchmuller et al , arXiv:0707:3447 0.05 2.5 2.5 0.04 P 2 2 0.03 1.5 1.5 0.02 1 1 0.01 0.5 0.5 LEP Theoretically 0 excluded inaccessible 110 115 120 125 130 135 0 0 90 90 100 100 110 110 120 120 130 130 140 140 m h /GeV Figure 0: Including (LHS) or not including (RHS) the LEP2 direct Higgs mass constraints on the CMSSM. Tools for Supersymmetric Phenomenology: YETI 2008 B.C. Allanach – p.14/34

  16. Other literature Roszkowski, Ruiz & Trotta (2007) Roszkowski, Ruiz & Trotta (2007) −4 4 CMSSM, µ > 0 3.5 −5 ZEPLIN−I EDELWEISS−I 3 −6 CDMS−II SI (pb)] 2.5 m 0 (TeV) −7 2 Log[ σ p −8 1.5 −9 1 −10 0.5 CMSSM µ >0 −11 0.2 0.4 0.6 0.8 1 0.5 1 1.5 2 m 1/2 (TeV) m χ (TeV) R. R. de Austri, R. Trotta and L. Roszkowski, arXiv:0705.2012 , including some NNLO b → sγ pieces. susyBayes Tools for Supersymmetric Phenomenology: YETI 2008 B.C. Allanach – p.15/34

  17. Fitting to SUSY Breaking Model m 1 / 2 [GeV] 2.4 480 Spheno 460 Spheno Suspect tan β 2.2 Isajet 440 Isajet 2. 420 Softsusy 1.8 400 Softsusy Suspect 380 1.6 360 200 300 400 500 600 200 300 400 500 600 m 0 [GeV] m 0 [GeV] • Experimenters pick a SUSY breaking point • They derive observables and errors after detector simulation • We fit this “data” with our codes BCA, S Kraml, W Porod, JHEP 0303 (2003) 016 Tools for Supersymmetric Phenomenology: YETI 2008 B.C. Allanach – p.16/34

  18. Fits to future collider data Mass (GeV) 1000 Mass (GeV) 1000 Mass (GeV) 270 900 900 265 260 800 800 255 ~ L e 250 700 700 245 L L ~ ~ e e 240 600 600 235 230 500 500 225 220 400 400 115 120 125 130 135 140 145 ∼ χ 0 Mass (GeV) 1 300 300 σ ( � P T ) 200 200 100 100 0 0 0 100 200 300 400 500 600 700 800 9001000 0 100 200 300 400 500 600 700 800 9001000 ∼ ∼ χ χ 0 0 Mass (GeV) Mass (GeV) 1 1 Lester, Parker, White, JHEP 0601 (2006) 080 • Assume edge measurements from some SUSY point: what constraints exist on the phenomenological MSSM? • SFITTER / FITTINO Tools for Supersymmetric Phenomenology: YETI 2008 B.C. Allanach – p.17/34

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend