tomasz plawski jefferson lab ops stay retreat july 15th
play

Tomasz Plawski Jefferson Lab OPS Stay Retreat, July 15th, 2015 - PowerPoint PPT Presentation

MO/LO Performance Summary and Maintenance Plans Tomasz Plawski Jefferson Lab OPS Stay Retreat, July 15th, 2015 Outline MO System Description Performance Phase Jitter Energy Spread Phase Drift Beam Energy Amplitude Stability


  1. MO/LO Performance Summary and Maintenance Plans Tomasz Plawski Jefferson Lab OPS Stay Retreat, July 15th, 2015

  2. Outline • MO System Description • Performance Phase Jitter – Energy Spread Phase Drift – Beam Energy Amplitude Stability – Beam Energy/ Gradient Calibration • Monitoring and Maintenance • Future Plans

  3. MO System Description

  4. Performance Why MO performance is important ? Master/Local oscillators used for two purposes: • down/up-conversions • clock synthesis for ADC and DAC in digital LLRF systems or phase reference in analog LLRF ones are the largest contributors of uncorrectable inaccuracies of cavity accelerating field !

  5. Performance – Phase Noise LLRF stability requirements: Correlated Uncorrelated 2.2 x 10 -5 4.5 x 10 -4 Amplitude RMS error Phase RMS error 0.25 ° 0.5 ° 499 MHz LO / R&S +B22 option 10/70 MHz MO / Wenzel Associates, Inc. 340 fs (shown) will cause 180 mdeg of phase and CDCM7005 based system for DLLRF noise on 1427 MHz LO signal Slight Concern: Slight Concern: PM modulation used for Beam-Based FM modulation used for path control (CEBAF Phase Stabilization, rises phase noise circumference can change significantly) rises by about 70 mdeg phase noise up to 230 mdeg

  6. Performance – Phase Drift Drift Mitigation • Linac, Injector LO and MO lines temperature stabilization • Precision Beam-Based RF Phase Stabilization • Hall D Phase Drift Monitor ( New optical fiber based RF distribution system) • Service Building Temperature Control • Careful Selection of RF Cables Weakness Phase drift between Injector and NL uncontrolled Phase drift between MCC and W1/W2 uncontrolled Possible improvements • Phase feedback between MCC and local MO chassis • Well-known good solution, Phase Averaging Line, is not practical for CEBAF

  7. Performance – Amplitude Stability The concern is amplitude stability of LO signal used for RF signals heterodyning in LLRF systems Typically for C100 - DLLRF Systems: 1 % of LO amplitude variation will cause 0.25 % of cavity gradient variation ! May 2015 NL LO events Problem has been fixed by increasing 499 MHz signal level before frequency trippler rather than adjusting 1427 MHz drive signal level Why it happened ? We have different “flavor” of 1427 MHz synthesizer while drive level was set identically level repair adjustment 18 % of LO level drop Future mitigation: • Documentation updates • Diagnostic/ repair plans

  8. Performance – Amplitude Stability LO Amplifier Specification LO level [mV] LCW temperature Max. cooling water temperature for 500 W Bruker amplifier is 35 ° C ( 95 ° F) ! We learned it by experiencing the consequences. Impending plans: • LCW 19” Rack Mount Water Chiller ( temp. stability ± 0.1 ° C) - 4 local MO racks

  9. Performance – Amplitude Stability Amplitude Stability LO level [mV] LCW temperature Recent LO level ( LOPW) stability is 0.5% thus gradient measurement may vary by 0.13% Installation of LCW chiller may reduce this number down to 0.01% . At this accuracy contribution of other RF system components will overcome this value. Considered option : LO Amplifier Automatic Gain Control Pros: keep amplitude stable Cons: could and will cause phase shift

  10. What else can be done ? • Increase LO signal level by 1 dB ( from 250 W to 320 W) for better LLRF mixer “saturation” in order to reduce modulation index ( currently .25) Pros: Reduction of modulation index from .25 down to ~ .15 Cons: All LLRF system will required re-calibration

  11. Monitoring and Maintenance • Every LLRF system contains LO and MO power detector and these signals are archived • LO lines temperatures are controlled and monitored • Since phase measurement is relative we can’t monitor LO/MO phases unless feedback loop will be added ( Hall D case) • MO diagnostic chassis + software provide some level of diagnostic for MCC located MO system • Most critical spare parts are stored and occasionally tested

  12. Future Plans • LCW 19” Rack Mount Water Chiller ( temp. stability ± 0.1 ° C) - 4 local MO racks • Remove obsolete EIPCS Screens

  13. Thank you for your attention ! Special thank to Larry Farrish and Clyde Mounts for continued support of MO operation.

  14. Backup Slides

  15. LO Line Coupler

  16. RF cable LFC78-50J-TC Expected Phase drift:

  17. Hall D MO System

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend