timed regular expressions derivatives and matching
play

Timed Regular Expressions Derivatives and Matching Dogan Ulus 1 , - PowerPoint PPT Presentation

Timed Regular Expressions Derivatives and Matching Dogan Ulus 1 , Thomas Ferr` ere 1 , Eugene Asarin 2 , and Oded Maler 1 1 verimag , Universit e Grenoble-Alpes & CNRS, France 2 irif , Universit e Paris Diderot, France May 10, 2016


  1. Timed Regular Expressions Derivatives and Matching Dogan Ulus 1 , Thomas Ferr` ere 1 , Eugene Asarin 2 , and Oded Maler 1 1 verimag , Universit´ e Grenoble-Alpes & CNRS, France 2 irif , Universit´ e Paris Diderot, France May 10, 2016 EQINOCS Workshop TRE Derivatives and Matching Thomas Ferr` ere 1 / 27

  2. Regular Expressions Formal Languages ◮ Alphabet: set of actions Σ = { a, b, c, . . . , z } ◮ Word: sequence w = a 1 a 2 a 3 . . . a n where a i ∈ Σ Regular Expressions ◮ Syntax: ϕ := ∅ | ǫ | a | ϕ · ϕ | ϕ ∨ ϕ | ϕ ∗ ◮ Semantics: � ∅ � w = ∅ � ǫ � w = { ( i, i ) : 0 ≤ i ≤ n } � a � w = { ( i − 1 , i ) : w [ i − 1 , i ] = a } � ϕ · ψ � w = { ( i, j ) : ∃ k, ( i, k ) ∈ � ϕ � w ∧ ( k, j ) ∈ � ψ � w } � ϕ i � � � ϕ ∗ � w = � ϕ ∨ ψ � w = � ϕ � w ∪ � ψ � w w i ≥ 0 TRE Derivatives and Matching Pattern Matching Thomas Ferr` ere 2 / 27

  3. Pattern Matching Problem (Matching) Given w = a 1 a 2 a 3 . . . a n and expression ϕ , compute � ϕ � w . Example � ϕ � w : j • • • • 5 • 4 ϕ = a ∗ ( bc ) ∗ • • • 3 • 2 • • 1 w : a c c b b • 0 0 1 2 3 4 5 0 1 2 3 4 5 i TRE Derivatives and Matching Pattern Matching Thomas Ferr` ere 3 / 27

  4. Timed Languages Timed words w = ( t 1 , a 1 )( t 2 , a 2 ) . . . ( t n , a n ) with 0 ≤ t 1 ≤ t 2 ≤ . . . ≤ t n . Two alternative interpretations: ◮ Event sequences ◮ interpret ( t, a ) as “ a occurs at time t ” ◮ notation: w = r 1 a 1 r 2 a 2 . . . r n a n (with r i = t i − t i − 1 , t 0 = 0 ) ◮ Continuous Signals ◮ interpret ( t, a ) as “ a holds up to time t ” ◮ notation: w = a r 1 1 a r 2 2 . . . a r n n (with r i = t i − t i − 1 , t 0 = 0 ) ◮ closure under stuttering : a r · a s = a r + s and a 0 = ǫ TRE Derivatives and Matching Pattern Matching Thomas Ferr` ere 4 / 27

  5. Timed Regular Expressions ◮ New operator � � I requiring duration in interval I ◮ Atomic expressions a now denote r · a (resp. a r ) for abritrary r ◮ Syntax: ϕ := ∅ | ǫ | a | ϕ · ϕ | ϕ ∨ ϕ | ϕ ∗ | � ϕ � I ◮ Semantics: � ∅ � w = ∅ � ǫ � w = { ( t, t ) : 0 ≤ t ≤ | w |} � a � w = { ( t, t ′ ) : w [ t, t ′ ] = a } � ϕ · ψ � w = { ( t, t ′ ) : ∃ t ′′ , ( t, t ′′ ) ∈ � ϕ � w ∧ ( t ′′ , t ′ ) ∈ � ψ � w } � ϕ i � � � ϕ ∗ � w = � ϕ ∨ ψ � w = � ϕ � w ∪ � ψ � w w i ≥ 0 � � ϕ � I � w = { ( t, t ′ ) ∈ � ϕ � w : t ′ − t ∈ I } TRE Derivatives and Matching Pattern Matching Thomas Ferr` ere 5 / 27

  6. Timed Regular Expressions ◮ New operator � � I requiring duration in interval I ◮ Atomic expressions a now denote r · a (resp. a r ) for abritrary r ◮ Syntax: ϕ := ∅ | ǫ | a | ϕ · ϕ | ϕ ∨ ϕ | ϕ ∗ | � ϕ � I ◮ Semantics: � ∅ � w = ∅ � ǫ � w = { ( t, t ) : 0 ≤ t ≤ | w |} � a � w = { ( t, t ′ ) : w [ t, t ′ ] = a } � ϕ · ψ � w = � ϕ � w ◦ � ψ � w � ϕ i � � � ϕ ∗ � w = � ϕ ∨ ψ � w = � ϕ � w ∪ � ψ � w w i ≥ 0 � � ϕ � I � w = { ( t, t ′ ) ∈ � ϕ � w : t ′ − t ∈ I } TRE Derivatives and Matching Pattern Matching Thomas Ferr` ere 5 / 27

  7. Atomic Events and Atomic Signals Let w = ( t 1 , a 1 )( t 2 , a 2 ) . . . ( t n , a n ) . Definition (sub-sequence) w [ t, t ′ ] = a if and only if ∃ i , t = t i − 1 ≤ t ′ = t i , and a i = a Definition (sub-signal) w [ t, t ′ ] = a if and only if ∃ i , t i − 1 ≤ t < t ′ ≤ t i , and a i = a assuming w stutter-free. ◮ In event sequences w [ t, t ′ ] only defined if some events occur at times t and t ′ ◮ In continuous signals w [ t, t ′ ] defined everywhere TRE Derivatives and Matching Pattern Matching Thomas Ferr` ere 6 / 27

  8. Timed Pattern Matching (Event Sequences) Example � ϕ � w : t ′ • • • • 5 . 7 • 4 . 3 • • • 3 . 6 ϕ = a ∗ ( bc ) ∗ • 2 . 2 • • 1 . 5 a b c b c w : • 0 1 . 5 2 . 2 3 . 6 4 . 3 5 . 7 0 0 1 . 52 . 2 3 . 64 . 3 5 . 7 t TRE Derivatives and Matching Pattern Matching Thomas Ferr` ere 7 / 27

  9. Timed Pattern Matching (Event Sequences) Example � ϕ � w : t ′ • • 5 . 7 4 . 3 • • 3 . 6 ϕ = � a ∗ ( bc ) ∗ � [2 , 5] 2 . 2 1 . 5 a b c b c w : 0 1 . 5 2 . 2 3 . 6 4 . 3 5 . 7 0 0 1 . 52 . 2 3 . 64 . 3 5 . 7 t TRE Derivatives and Matching Pattern Matching Thomas Ferr` ere 7 / 27

  10. Timed Pattern Matching (Continuous Signals) Example � ϕ � w : t ′ 5 . 7 4 . 3 3 . 6 ϕ = a ∗ ( bc ) ∗ 2 . 2 1 . 5 w : a c c b b 0 1 . 5 2 . 2 3 . 6 4 . 3 5 . 7 0 0 1 . 52 . 2 3 . 64 . 3 5 . 7 t TRE Derivatives and Matching Pattern Matching Thomas Ferr` ere 8 / 27

  11. Timed Pattern Matching (Continuous Signals) Example � ϕ � w : t ′ 5 . 7 4 . 3 3 . 6 ϕ = � a ∗ ( bc ) ∗ � [2 , 5] 2 . 2 1 . 5 w : a c c b b 0 1 . 5 2 . 2 3 . 6 4 . 3 5 . 7 0 0 1 . 52 . 2 3 . 64 . 3 5 . 7 t TRE Derivatives and Matching Pattern Matching Thomas Ferr` ere 8 / 27

  12. Offline Matching Continuous Signals Theorem (FORMATS’14) The set of matches � ϕ � w is computable as a finite union of 2d zones. Proof. Structural induction over ϕ : ◮ a : triangular zones for every segment ◮ ϕ ∨ ψ : simple union ◮ ϕ · ψ : composition of binary relations ◮ ϕ ∗ : closure is obtained in 2( | w | + � w � ) + 1 iterations ◮ � ϕ � I : intersection of zones with diagonal band of { ( t, t ′ ) : t ′ − t ∈ I } TRE Derivatives and Matching Pattern Matching Thomas Ferr` ere 9 / 27

  13. Offline Matching Continuous Signals (Concatenation) Example Concatenation of ϕ = � p � [1 , ∞ ] with ψ = � q � [0 , 2] 8 7 t ′ 6 5 t ′′ 4 3 2 ϕ ψ 1 ϕ · ψ 0 p p q q t ′′ t ′ 0 1 2 3 4 5 6 7 8 t TRE Derivatives and Matching Pattern Matching Thomas Ferr` ere 10 / 27 a match ( t, t ′ ) of ϕ · ψ zones for ϕ , ψ and ϕ · ψ

  14. Derivatives of Regular Expressions Nullable check ν ( ϕ 1 · ϕ 2 ) = ν ( ϕ 1 ) · ν ( ϕ 2 ) ν ( ∅ ) = ∅ ν ( ǫ ) = ǫ ν ( ϕ 1 ∨ ϕ 2 ) = ν ( ϕ 1 ) ∨ ν ( ϕ 2 ) ν ( ϕ ∗ ) = ǫ ν ( a ) = ∅ Derivatives d a ( ∅ ) = ∅ d a ( ϕ 1 · ϕ 2 ) = d a ( ϕ 1 ) · ϕ 2 ∨ ν ( ϕ 1 ) · d a ( ϕ 2 ) d a ( ǫ ) = ∅ d a ( ϕ 1 ∨ ϕ 2 ) = d a ( ϕ 1 ) ∨ d a ( ϕ 2 ) d a ( ϕ ∗ ) = d a ( ϕ ) · ϕ ∗ d a ( a ) = ǫ d a ( b ) = ∅ TRE Derivatives and Matching Derivatives Thomas Ferr` ere 11 / 27

  15. Matching using Derivatives Example: ϕ = a ∗ ( bc ) ∗ and w = abcbc . Symbols a b c b c Positions 1 2 3 4 5 1 ϕ TRE Derivatives and Matching Derivatives Thomas Ferr` ere 12 / 27

  16. Matching using Derivatives Example: ϕ = a ∗ ( bc ) ∗ and w = abcbc . Symbols a b c b c Positions 1 2 3 4 5 a ∗ ( bc ) ∗ 1 ϕ − → d a TRE Derivatives and Matching Derivatives Thomas Ferr` ere 12 / 27

  17. Matching using Derivatives Example: ϕ = a ∗ ( bc ) ∗ and w = abcbc . Symbols a b c b c Positions 1 2 3 4 5 a ∗ ( bc ) ∗ c ( bc ) ∗ 1 ϕ − → − → d a d b TRE Derivatives and Matching Derivatives Thomas Ferr` ere 12 / 27

  18. Matching using Derivatives Example: ϕ = a ∗ ( bc ) ∗ and w = abcbc . Symbols a b c b c Positions 1 2 3 4 5 a ∗ ( bc ) ∗ c ( bc ) ∗ ( bc ) ∗ 1 ϕ − → − → − → d a d b d c TRE Derivatives and Matching Derivatives Thomas Ferr` ere 12 / 27

  19. Matching using Derivatives Example: ϕ = a ∗ ( bc ) ∗ and w = abcbc . Symbols a b c b c Positions 1 2 3 4 5 a ∗ ( bc ) ∗ c ( bc ) ∗ ( bc ) ∗ c ( bc ) ∗ 1 ϕ − → − → − → − → d a d b d c d b TRE Derivatives and Matching Derivatives Thomas Ferr` ere 12 / 27

  20. Matching using Derivatives Example: ϕ = a ∗ ( bc ) ∗ and w = abcbc . Symbols a b c b c Positions 1 2 3 4 5 a ∗ ( bc ) ∗ c ( bc ) ∗ ( bc ) ∗ c ( bc ) ∗ ( bc ) ∗ 1 ϕ − → − → − → − → − → d a d b d c d b d c TRE Derivatives and Matching Derivatives Thomas Ferr` ere 12 / 27

  21. Matching using Derivatives Example: ϕ = a ∗ ( bc ) ∗ and w = abcbc . Symbols a b c b c Positions 1 2 3 4 5 a ∗ ( bc ) ∗ c ( bc ) ∗ ( bc ) ∗ c ( bc ) ∗ ( bc ) ∗ 1 ϕ − → − → − → − → − → d a d b d c d b d c c ( bc ) ∗ ( bc ) ∗ c ( bc ) ∗ ( bc ) ∗ 2 ϕ − → − → − → − → d b d c d b d c 3 ϕ − → − → − → ∅ ∅ ∅ d c d b d c c ( bc ) ∗ ( bc ) ∗ 4 ϕ − → − → d b d c 5 ϕ − → ∅ d c TRE Derivatives and Matching Derivatives Thomas Ferr` ere 12 / 27

  22. Derivatives of Timed Regular Expressions (Event Sequences) � ǫ if 0 ∈ I and ν ( ϕ ) ◮ Nullable check: ν ( � ϕ � I ) = ∅ otherwise ◮ Derivative relative to events: d a ( � ϕ � I ) = � d a ( ϕ ) � I ◮ Derivative relative to time: d r ( a ) = a and d r ( � ϕ � I ) = � d r ( ϕ ) � I ⊖ r ◮ The set of derivatives over some event sequence is finite TRE Derivatives and Matching Timed Derivatives Thomas Ferr` ere 13 / 27

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend