time varying external potentials in nbody6
play

Time-varying external potentials in NBODY6 Or: The evolution of - PowerPoint PPT Presentation

Time-varying external potentials in NBODY6 Or: The evolution of KZ(14) Mark Gieles Florent Renaud, Maxime Delorme Evolution without tides KZ(14)=0 Baumgardt, Hut & Heggie 2002 Odenkirchen+ 2002 Agertz & Kravtsov Horizon


  1. Time-varying external potentials in NBODY6 Or: “ The evolution of KZ(14) ” Mark Gieles Florent Renaud, Maxime Delorme

  2. Evolution without tides KZ(14)=0 Baumgardt, Hut & Heggie 2002

  3. Odenkirchen+ 2002

  4. Agertz & Kravtsov Horizon simulation (Teyssier et al.)

  5. Existing methods: NBODY5 Solve EoM in rotating reference frame §8.5-8.6 e.g. Oh, Lin & Aarseth 1992 y R I Galactic centre r x cluster tidal Coriolis centrifugal Euler r = �r φ c + ¨ R I � ¨ r � Ω ⇥ ( Ω ⇥ r ) � ˙ ¨ R I0 � 2 Ω ⇥ ˙ Ω ⇥ r Pro: numerical accuracy Con: work out (linearised) terms for each ! G

  6. Existing methods: NBODY6 Solve EoM in rotating reference frame §8.5-8.6 e.g. Giersz & Heggie 1997 cluster Coriolis tidal+centrifugal Euler r + Ω 2 (3 x e x � z e z ) r = �r φ c � 2 Ω ⇥ ˙ ¨ KZ(14)=1: Galactic disc (Oort constants) KZ(14)=2: Point-mass galaxy Pro: numerical accuracy, conserved Jacobi energy E J Con: circular orbits, derive (linearised) terms & for each ! G j ≡ ... r

  7. Existing methods: NBODY6 Solve EoM in non-rotating (accelerating) frame §8.5-8.6 e.g. Baumgardt & Makino 2003; Hurley+; Küpper+ cluster tidal y Galactic centre r = �r φ c + ¨ R I � ¨ ¨ R I0 x KZ(14)=3: 4 component Galaxy model: 1. Miyamoto - Nagai disc y 2. (singular) isothermal halo 3. Dehnen/Tremaine bulge x 4. Central point-mass (i.e. black hole) Pro: all orbits, (relatively) easy to sum components Con: work out tidal terms & j for each ! G , time independent ! G

  8. Existing methods: NBODY6 KZ(14)=3 §8.5-8.6 Note on energy conservation: Renaud & Gieles 2015a; Heggie priv. comm.

  9. Existing time-varying potential NBODY6 KZ(14)=4 Background time dependent Plummer (1911) potential “gas expulsion” e.g. Kroupa++

  10. Time-varying potentials: NBODY6tt https://github.com/florentrenaud/nbody6tt KZ(14)=9 “Mode A”: Renaud, Gieles & Boily 2011 cluster tidal r = �r φ c + T tid · r ¨ T tid = − ∂ 2 φ G Tidal tensor: ∂ x i ∂ x j Pro: ! G can be anything Con: linearised tides, not good for streams

  11. Time-varying potentials: NBODY6tt https://github.com/florentrenaud/nbody6tt KZ(14)=9 “Mode A”: Renaud, Gieles & Boily 2011 How it works: • ttinit.f: reads tdal tensor file tt.dat (time + 9 TT components) • ttcal.f: quadratic interpolation of TT in time, get TT derivative •Some changes to xtrnlf.f: see also: http://personal.ph.surrey.ac.uk/~fr0005/nbody6tt.php

  12. Test Mode A NBODY6tt KZ(14)=9 vs KZ(14)=3

  13. A T ALE OF T WO C LUSTERS Renaud & Gieles (2013)

  14. Time-varying potentials: NBODY6tt KZ(14)=9 “Mode B”: Renaud & Gieles 2015a ! G can have any dependence on space and time! cluster tidal r = �r φ c + a G ( r , t ) � a G0 ( r , t ) ¨ Pro: ! G can be anything, external forces not linearised: streams Con: analytical expression for ! G ( r ,t )

  15. NBODY6tt: KZ(14)=9 “Mode B”

  16. Stepsize h i (Press+ 2007) For fourth order: ✏ = machine precision (~10 -16 ) ⇣ = 1/5 ◆ 1 / 5 ✓ � G = curvature scale x c = @ 5 � G / @ x 5

  17. Stepsize h i F reg precision (GPU) F irr precision (CPU)

  18. NBODY6tt: KZ(14)=9 “Mode B” How it works: •Computation galactic force and its derivative: ttforce.f (comparable to ttfnuc.f, fhalo.f, etc.) •User defined ! G ( r ,t ): ttgalaxy.f

  19. Test Mode B NBODY6tt KZ(14)=9 (Mode B) vs KZ(14)=3 Dissolution in point-mass galaxy Disc crossing

  20. T HREE T IDAL H ISTORIES Static potential Growing potential 
 Static potential z = 5 5 > z > 0 z = 0 not really used most realist one most often used

  21. N BODY 6 TT R UNS Time-dependent Static (z=0) R ENAUD & G IELES 2015 B

  22. N BODY 6 TT R UNS 500 pc Time-dependent Static (z=0) R ENAUD & G IELES 2015 B

  23. N BODY 6 TT R UNS 500 pc Time-dependent Static (z=0) R ENAUD & G IELES 2015 B

  24. Agertz & Kravtsov Horizon simulation (Teyssier et al.)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend