thermodynamics of hadrons using the gaussian functional
play

Thermodynamics of hadrons using the Gaussian functional method in - PowerPoint PPT Presentation

Thermodynamics of hadrons using the Gaussian functional method in the linear sigma model Shotaro Imai 1 and Hua-Xin Chen 2 , Hiroshi Toki 3 , Li-Sheng Geng 2 Kyoto Univ. 1 , Beigang Univ. 2 , RCNP/Osaka Univ. 3 Oct. 27 2013 Chiral 13 @ Beihang


  1. Thermodynamics of hadrons using the Gaussian functional method in the linear sigma model Shotaro Imai 1 and Hua-Xin Chen 2 , Hiroshi Toki 3 , Li-Sheng Geng 2 Kyoto Univ. 1 , Beigang Univ. 2 , RCNP/Osaka Univ. 3 Oct. 27 2013 Chiral 13 @ Beihang Univ. arXiv:1309.0591 [nucl-th] 1 / 15

  2. Introduction Chiral symmetry breaking ▶ Mass generation for (massless or light) fermion ▶ Nambu-Goldstone boson ▶ Restoration at high temperature (phase transition) Non-perturbative interaction among mesons The interaction term of linear sigma model ( λ ∼ O (10) ) L int = λ 4 ( σ 2 + π 2 ) 2 Chiral symmetry with the fluctuations of mesons around their mean field values at finite temperature ▶ The Cornwall-Jackiw-Tomboulis (CJT) formalism J. M. Cornwall, R. Jackiw and E. Tomboulis PRD 10 (1974) . . . ▶ The optimized perturbation theory S. Chiku and T. Hatsuda PRD 58 (1998) . . . ▶ The Gaussian Functional Method: corresponding to Hartree-Fock approx. + RPA T. Barnes and G. Ghandour PRD 22 (1980) . . . 2 / 15

  3. The Gaussian Functional Method (view of my talk) Gaussian Functional Method Barnes and Ghandour PRD 22 (1980), Nakamura and Domitrasinovic PTP 106 (2001) 1. Schr¨ odinger picture in field theory with the Gaussian ground state functional ansatz 2. The minimization condition: determination of the variational parameters ▶ The resulting (dressed) mass of Nambu-Goldstone (NG) boson is not zero due to the non-perturbative effect 3. Considering the bound state of mesons (4 quarks state): Bethe-Salpeter equation ▶ Emergence of the NG bosons → Physical mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ▶ Fixing the parameters with the sigma meson mass (500 MeV) ▶ Dressed mass vs. Physical mass 4. The phase transition at finite temperature 3 / 15

  4. The Gaussian Functional Method I O(2) Linear sigma model ( φ = ( ϕ 0 , ϕ 1 , ϕ 2 , ϕ 3 ) = ( σ, π ) ) L =1 2( ∂ µ φ ) 2 + 1 2 µ 0 φ 2 − λ 0 4 ( φ 2 ) 2 + εσ The Hamiltonian δ 2 ∫ ( − 1 δϕ i ( x ) ϕ i ( y ) + 1 H [ φ ] = d y δ ( y − x ) 2 ∇ x ϕ i ( x ) ∇ y ϕ i ( y ) 2 ) − 1 2 µ 0 φ 2 + λ 0 4 ( φ 2 ) 2 + εσ The Gaussian ground state functional ) ( − 1 ∫ ] G − 1 Ψ[ φ ] = N exp d x d y [ ϕ i ( x ) − ⟨ ϕ i ( x ) ⟩ ij ( x , y )[ ϕ j ( y ) − ⟨ ϕ j ( y ) ⟩ ] 4 fluctuation V.E.V d 3 k G ij ( x , y ) =1 ∫ 1 e i k · ( x − y ) 2 δ ij (2 π ) 3 √ k 2 + M 2 i dressed mass Energy with the variational parameters M i and ⟨ ϕ i ⟩ ∫ E ( M i , ⟨ ϕ i ⟩ ) = D φ Ψ ∗ [ φ ] H [ φ ]Ψ[ φ ] 4 / 15

  5. The Gaussian Functional Method II The minimization condition: Determination of parameters ( ⟨ ϕ i ⟩ , M i ) ( ∂ E ( M i , ⟨ ϕ i ⟩ ) ) = 0 , for i = 0 . . . 3 ∂ ⟨ ϕ i ⟩ , M i min ⇔ (One- and two-point) Schwinger-Dyson equations = 1 + 1 + 2 6 The mean field values: One-point SD equation ⟨ ϕ 0 ⟩ = v, ⟨ ϕ i ⟩ = 0 for i = 1 , 2 , 3 0 = − ε v 2 + 3 I 0 ( M σ ) + 3 I 0 ( M π ) µ 2 [ ] v + λ 0 d 4 k ∫ 1 I 0 ( M i ) = i k 2 − M 2 (2 π ) 4 i + iϵ 5 / 15

  6. The Gaussian Functional Method III Two-point SD equation: (Determination of masses M i ) + 1 + 1 = 2 2 Dressed mass ( M 0 = M σ , M i = M π ) 3 v 2 + 3 I 0 ( M σ ) + 3 I 0 ( M π ) M 2 σ = − µ 2 [ ] 0 + λ 0 = ε v + 2 λ 0 v 2 v 2 + I 0 ( M σ ) + 5 I 0 ( M π ) M 2 π = − µ 2 [ ] 0 + λ 0 = ε v + 2 λ 0 [ I 0 ( M π ) − I 0 ( M σ )] non-perturbative effect The pion mass M π ̸ = 0 even in the chiral limit ε → 0 → DO NOT satisfy The Nambu-Goldstone theorem 6 / 15

  7. The Nambu-Goldstone Theorem The dressed mass cannot satisfy the Nambu-Goldstone theorem Relation between M σ and M π with some cutoff Λ 2000 2000 2000 2000 1500 1500 1500 1500 M [MeV] M [MeV] 1000 1000 1000 1000 500 500 500 500 0 0 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 M [MeV] M [MeV] (b) ε ̸ = 0 (a) ε = 0 ▶ The dressed masses depend on the cutoff ▶ They cannot satisfy the NG theorem independently the cutoff ▶ There are no finite sigma mass and zero pion mass in the chiral limit ε = 0 ▶ The physical mass of sigma (600 MeV) and pion (140 MeV) cannot exist in ε ̸ = 0 We cannot identify these masses as physcal mass (NG boson) 7 / 15

  8. The Bethe-Salpeter Equation I Physical masses appear as pole of the Bethe-Salpeter (four-point SD) euqarion (bound state of mesons) σ − π channel → Physical pion mass m π ( s = p 2 ) d 4 k ∫ 1 G σπ → σπ ( p 2 ) = i [ k 2 − M 2 σ + iϵ ] [( k − p ) 2 − M 2 (2 π ) 4 π + iϵ ] v 2 [ ( )] V σπ → σπ ( s ) =2 λ 0 1 + 2 λ 0 s − M 2 π T σπ → σπ ( s ) = V σπ → σπ ( s ) + V σπ → σπ ( s ) G σπ → σπ ( s ) T σπ → σπ ( s ) V σπ → σπ ( s ) = 1 − V σπ → σπ ( s ) G σπ → σπ ( s ) 8 / 15

  9. The Bethe-Salpeter Equation II The coupled channel σ − σ and π − π → Physical sigma mass m σ  [ ] [ ]  1 + 3 2 λ 0 v 2 1 + 3 2 λ 0 v 2  3 ( V σσ → σσ ) V σσ → ππ s − M 2 s − M 2 V = = 2 λ 0 σ σ 1 [ ] [ ]  1 + 3 2 λ 0 v 2 5 + 3 2 λ 0 v 2 V ππ → σσ 3 V ππ → ππ 1 s − M 2 3 s − M 2 σ σ ( T σσ → σσ ) ( G σσ → σσ ) T σσ → ππ 0 T = , G = 1 T ππ → σσ 3 T ππ → ππ 0 3 G ππ → ππ T = V + 1 2 V GT =(1 − 1 2 V G ) − 1 V Physical mass m σ , m π vs. Dressed mass M π (NG boson) 1000 1000 800 800 [MeV] [MeV] 600 600 m m 400 400 m m 200 200 m m 0 0 -200 -200 0 200 400 600 800 1000 0 200 400 600 800 1000 M [MeV] M [MeV] (b) ε ̸ = 0 (a) ε = 0 9 / 15

  10. Parameters π 0 = 93 × 142 2 MeV 3 ) We accept the parameters below ( ε = f π m 2 chiral limit breaking case λ 0 =83 . 6 λ 0 =75 . 5 µ 0 =1680 MeV µ 0 =1610 MeV Λ =800 MeV Λ =800 MeV ε =1 . 86 × 10 6 MeV 3 ε =0 MeV 3 ⇓ ⇓ M σ =1200 MeV M σ =1150 MeV M π =580 MeV M π =564 MeV m σ =500 MeV m σ =500 MeV v = f π =93 MeV v = f π = 93 MeV m π =0 MeV m π =138 MeV We fit the parameters to reproduce the pion decay constant f π and the pion mass m π 10 / 15

  11. Finite Temperature I Finite temperature with the Matsubara formalism E ( v, M σ , M π ) → E ( v ( T ) , M σ ( T ) , M π ( T ); T ) The behavior of the free energy as a function of the mean field value v (fixing M σ , M π ) In the case of the chiral limit 10 100 8 80 4 6 v [MeV] 60 T = 1 9 4 4 40 9 T = 3 0 0 T = 1 9 0 2 20 T = 1 9 5 T = 0 0 0 -2 -20 0 50 100 150 200 0 100 200 300 v [MeV] T [MeV] (a) Free energy (b) Mean field values v The free energy is suddenly change at 195 MeV and the first order phase transition 11 / 15

  12. Finite Temperature II In the case of the explicit chiral symmetry breaking E χSB = εv 10 100 8 80 4 6 v [MeV] 60 T = 1 9 8 .2 4 40 T = 3 0 0 9 T = 1 9 5 2 20 T = 1 9 9 T = 0 0 0 -2 -20 0 50 100 150 200 0 100 200 300 v [MeV] T [MeV] (a) Free energy (b) Mean field values v Similar behavior even in the case of explicit symmetry breaking: Suddenly change at 195 MeV and the first order phase transition ▶ The whole energy at transition temperature E ∼ − 10 8 MeV 4 ▶ The chiral symmetry breaking term E χSB ∼ − 10 7 MeV 4 Since the contribution of E χSB is 10 times smaller, the free energy suddenly change → In the MFA, they are comparable ∼ − 10 8 MeV 4 12 / 15

  13. Finite Temperature III Solutions of the BS equation at finite temperature G ( s ) → G ( s, T ) 1000 1000 800 800 [MeV] [MeV] 600 m 600 m m m 400 400 m 200 200 m m m 0 0 -200 -200 0 100 200 300 0 100 200 300 T [MeV] T [MeV] (b) ε ̸ = 0 (a) ε = 0 ▶ Mesons bound state picture holds only in the symmetry broken phase ▶ In the symmetric phase, they are unbound and their masses π + 4 λ 0 v 2 G σπ → σπ ( m 2 π ) coincide the dressed mass m 2 π = M 2 1 − 2 λ 0 G σπ → σπ ( m 2 π ) The second term vanishes due to the symmetry restoration ( v → 0) 13 / 15

  14. Summary 1. We treat the non-perturbative effect using Gaussian ground state functional ansatz 2. Determination of the variational parameters (One- and Two-point Schwinger-Dyson Equation) ▶ There are NO NG bosons: unphysical particle 3. Mesons bound state in the Bethe-Salpeter Equation ▶ Emergence of the NG bosons ▶ 4 quarks picture of mesons 4. The behavior of the chiral symmetry at finite temperature ▶ The phase transition ▶ The meson-meson bound state Future work ▶ Investigation of 3 flavor case ▶ Application to 2 color system at finite density 14 / 15

  15. The end Thank you for your kind attention 15 / 15

  16. Back up slides 16 / 15

  17. Parameter dependence Chiral limit( ε = 0 ) 3000 3000 2000 2000 1500 1500 2000 2000 M [MeV] M 1000 1000 0 1000 1000 M 500 500 0 0 0 0 0 50 100 150 200 0 50 100 150 200 0 0 Explicit breaking( ε ̸ = 0 ) 3000 3000 2000 2000 1500 1500 2000 2000 M [MeV] M 1000 1000 0 1000 1000 M 500 500 0 0 0 0 0 50 100 150 200 0 50 100 150 200 0 0 (a) µ 0 vs. λ 0 (b) M σ , M π vs. λ 0 17 / 15

  18. Dressed mass at finite temperature Dressed mass at finite temperature ε M 2 v ( T ) + 2 λ 0 v 2 ( T ) σ ( T ) = ε M 2 π ( T ) = v ( T ) + 2 λ 0 [ I 0 ( M π ( T )) − I 0 ( M σ ( T ))] 1500 1500 [MeV] M [MeV] M 1000 1000 500 500 M M M M M M 0 0 0 100 200 300 0 100 200 300 T [MeV] T [MeV] (b) ε ̸ = 0 (a) ε = 0 18 / 15

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend