thermally induced non equilibrium fluctuations gravity
play

Thermally induced non-equilibrium fluctuations: gravity and - PowerPoint PPT Presentation

Thermally induced non-equilibrium fluctuations: gravity and finite-size effects Jan V. Sengers Institute for Physical Science and Technology University of Maryland, College Park, MD 20742 Jos M. Ortiz de Zrate Depto. Fsica Aplicada I


  1. Thermally induced non-equilibrium fluctuations: gravity and finite-size effects Jan V. Sengers Institute for Physical Science and Technology University of Maryland, College Park, MD 20742 José M. Ortiz de Zárate Depto. Física Aplicada I Universidad Complutense, Madrid IWNET, Røros, Norway, August 19-24, 2012

  2. Outline • 1. Introduction: statement of the problem • 2. Non-equilibrium fluctuating hydrodynamics • 3. Light-scattering experiments • 4. Gravity effect on non-equilibrium fluctuations • 5. Gravity and finite-size effects near R-B instability • 6. Gravity and finite-size effects far away from R-B instability

  3. 2 T  THERMAL FLUCTUATIONS IN FLUIDS 1 T T 1 T 2 L

  4. at constant pressure: c p  ds dT T

  5. Fluctuating Hydrodynamics Example: temperature evolution equation   ( at constant pressure ) ( v 0)    T       T       c T Q Q v Q   p   t  Linear phenomenological laws   Q 0 are valid only “on average”: “Fluctuating” heat equation    T           c T T 2 v Q   p  t         T T T t t ( , ), r v 0 v r ( , ), 0

  6. Thermal fluctuations in equilibrium   T          c T 2 Q p  t Fluctuation-dissipation theorem:                Q t Q t k T t t 2 ( , ) r ( , ) r 2 ( r r ) ( ) i j ij B 0 k T 2            T q t T q aq t 2 B 0 , ,0 exp  c p

  7. Thermal fluctuations in a temperature gradient T 1  T T L 1 2 T 2  g   L T 4  R Rayleigh number:  a α is thermal expansion coefficient ν is kinematic viscosity a = λ / ρ c p is thermal diffusivity

  8. Fluid in temperature gradient    T           c T T 2 v Q   p   t        T T T t t ( , ), r v 0 v r ( , ), 0 Fluctuating heat equation:     T             c T T 2 v Q   p  0  t  Fluctuating Navier-Stokes equation at constant pressure: 1          v 2 v + S  t Coupling between heat mode and viscous mode through  T 0

  9. Assumption: local equilibrium for noise correlations                Q t Q t k T t t 2 ( , ) r ( , ) r 2 ( r r ) ( ) i j ij B 0           S t S t r , r , ij kl                    k T t t 2 r r ij kl il jk B 0

  10. Fluids in a temperature gradient               C t C A aq t A q t 2 2 ( ) 1 exp exp    T 0 c   c  T T 2 2 ( ) ( )  p  p A A 0 0  T     T a a q T a q 2 2 4 2 2 4 ( ) ( ) 0 0 T.R. Kirkpatrick, J.R. Dorfman and E.G.D. Cohen, Phys. Rev. A 26, 995 (1982), D. Ronis and I. Procaccia, Phys. Rev. A 26, 1812 (1982), B.M. Law and J.V. Sengers, J. Stat. Phys. 57, 531 (1989).

  11. Bragg-Williams condition

  12.               C t C A D q t A q t 2 2 ( ) 1 exp exp    T T 0 Toluene q= 2255 cm –1 ,  T= 220 K/cm Law, Segrè, Gammon, Sengers, Phys. Rev. A 41 , 816 (1990)

  13. c   c  T 2 T 2 ( ) ( )  p A  p A T    T D D q 2 2 4   T D q ( ) 2 2 4 ( ) T T T Segrè, Gammon, Sengers, Law, Phys. Rev. A 45 , 714 (1992)

  14. Thermal fluctuations in a binary fluid Decay rate of viscous fluctuations  q 2 Decay rate of thermal fluctuations aq 2 Decay rate of concentration fluctuations Dq 2 In liquids:  > a ฀ D Lewis number Le= a / D

  15. Fluid mixtures in a concentration gradient  1 t           c c D c 2 v J   0   v 1        2 v S   t δ J is fluctuating mass-diffusion flux    c               J t J t k T D t t *   r r r r ( , ) ( , ) 2 ( ) ( ) i j ij   B 0   T P , Coupling between concentration mode and viscous mode through  c 0

  16. A T c   c  T T 2 2 ( ) ( )  p p A  A T    T a a q 2 2 4   T a q ( ) 2 2 4 ( ) Segrè, Gammon, Sengers, Law, Phys. Rev. A 45 , 714 (1992)

  17. P.N. Segrè, R. Schmitz, J.V. Sengers, Physica A 195 , 31 (1993)

  18. NONEQUILIBRIUM CONCENTRATION FLUCTUATIONS EFFECT OF GRAVITY   1  S S 0      NE NE 4 q q   1 / RO     1   q T 4   g One-component:   RO  T  0 P     1   q c 4   g Mixture:    RO 0 D  c  T

  19. Thermal fluctuations in a temperature gradient T 1  T T L 1 2 T 2  g   L T 4  R Rayleigh number:  a α is thermal expansion coefficient ν is kinematic viscosity a = λ / ρ c p is thermal diffusivity

  20. J.M. Ortiz de Zaráte, J.V. Sengers, Sol i d cur ve: R=1700 Dashed cur ve: R=0 Dot t ed cur ve: R=  25, 000

  21. Thermal fluctuations in a temperature gradient: Heated from below T 1 L T 1 < T 2 T 2  g   L T 4  R (positive) Rayleigh number:  a α is thermal expansion coefficient ν is kinematic viscosity a = λ / ρ c p is thermal diffusivity

  22. Shadowgraphy J.R. de Bruyn. E. Bodenschatz, S.W. Morris, S.P. Trainoff, Y. Hu, D.S. Cannell, G. Ahlers, Rev. Sci. Instrum. 67 , 2043 (1996)

  23. J.Oh, J.M.Ortiz de Zárate, J.V.Sengers, G.Ahlers Phys. Rev. E 69 , 021106 (2004)

  24. c R c R  R  

  25. Oh, Ortiz de Zárate, Sengers, Ahlers, Phys. Rev. E 69 , 021106 (2004)

  26. Oh, Ortiz de Zárate, Sengers, Ahlers, Phys. Rev. E 69 , 021106 (2004)

  27. Oh, Ortiz de Zárate, Sengers, Ahlers, Phys. Rev. E 69 , 021106 (2004)

  28. Thermal fluctuations in a temperature gradient: Heated from above T 1 L T 1 > T 2 T 2  g   L T 4  R (negative) Rayleigh number:  a α is thermal expansion coefficient ν is kinematic viscosity a = λ / ρ c p is thermal diffusivity

  29. Vailati, Cerbino, Mazzoni, Giglio, Nikolaenko, Takacs, Cannell, Meyer, Smart, Applied Optics 45 , 2155 (2006)

  30. J.V. Sengers, J.M. Ortiz de Zárate Lecture Notes in Physics 584 ( Springer,2002), pp. 121-145 c = 0.50 % 1 c = 2.00 % c = 4.00 % 0.1 NE 0 ~ S NE / S 0.01 1E-3 ~ 1E-3 1E-4 1E-4 4 5 6 7 8 9 10 1E-5 0.1 1 10 q / q RO polystyrene-toluene solutions

  31. polystyrene-toluene solution Δ T =17.40 K A. Vailati, R. Cerbino, S. Mazzoni, C.J. Takacs, D.S. Cannell, M. Giglio Nature Communications 2, article #290 (19 April, 2011)

  32. A. Vailati, R. Cerbino, S. Mazzoni, C.J. Takacs, D.S. Cannell, M. Giglio Nature Communications 2, article #290 (19 April, 2011)

  33. CS 2 C.J. Takacs, A. Vailati, R. Cerbino, S. Mazzoni, M. Giglio, D.S. Cannell PRL 106 , 244502 (2011)

  34. Conclusions • Validity of non-equilibrium fluctuating hydrodynamics has been confirmed experimentally by light scattering and shadowgraphy • Thermal fluctuations exhibit always a strong non- equilibrium enhancement • Non-equilibrium fluctuations are always long range encompassing the entire system • Non-equilibrium fluctuations on earth are affected by gravity • Non-equilibrium fluctuations are affected by the finite size of the system

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend