thermal states of transiently accreting neutron stars in
play

Thermal States of Transiently Accreting Neutron Stars in Quiescence - PowerPoint PPT Presentation

arXiv:1702.08452 Thermal States of Transiently Accreting Neutron Stars in Quiescence Sophia Han University of Tennessee, Knoxville collaboration with Andrew Steiner, UTK/ORNL ICNT Program at FRIB Wednesday Apr. 5th, 2017 Dense matter


  1. arXiv:1702.08452 Thermal States of Transiently Accreting Neutron Stars in Quiescence Sophia Han � University of Tennessee, Knoxville � collaboration with Andrew Steiner, UTK/ORNL ICNT Program at FRIB Wednesday Apr. 5th, 2017

  2. Dense matter in neutron stars Properties Observables equations of mass, radius, � state moment of inertia… thermal & cooling, spin-down, transport glitches, neutrinos, GW, properties, magnetic field… vortex pinning Thermal States of -Cooling isolated neutron stars � -Transiently accreting neutron stars

  3. Soft X-ray transients A class of low-mass X-ray binaries (LMXBs) � -outburst state: weeks to months of high accretion; bright in X-rays & optical � L ∼ 10 36 − 10 39 erg · s − 1 -quiescent state: decades or longer; very faint or even unobservable � L < 10 34 erg · s − 1 � Eventually a thermal steady-state for the system is reached � -regulator: deep crustal heating; Brown, Bildsten & Rutledge (1998) � -heat per one accreted nucleon deposited in the crust ~1-2 MeV: Haensel & Zdunik (1990), Haensel & Zdunik (2003) � �

  4. Global thermal balance -X-ray luminosity in quiescence (after reaching a stationary state, heating = cooling) depends on the time-averaged accretion rate � � dh ( ˙ M ) = L ∞ γ ( T s ) + L ∞ ν ( T i ), T s = T s ( T i ) L ∞ M ≡ t a ˙ ˙ M a / ( t a + t q ) � ˙ � M a � � ˙ ˙ M M Q � ≈ 6.03 × 10 33 MeV erg s − 1 L dh = Q × 10 − 10 M � yr − 1 m N � � -Exception: quasi-persistent X-ray transients e.g. KS 1731-260 with accretion period ~ years to decades instead of weeks to months � during accretion stellar interiors are heated out of thermal equilibrium � → significant late crust cooling observed after outburst

  5. Heat-blanketing envelope T i = T ( r )e Φ ( r ) = T b -NS interior assumed isothermal � insulating envelope extends to the density � T b ρ b ≃ 10 10 − 11 g cm − 3 � log η -temperature gradient near surface � � T b � 0.5+ α T s ≃ 10 6 K × � 10 8 K -light-element (H/He) amount � ⇔ thicker light-element layer higher η = g 2 surface temperature and emitted flux � 14 ∆ M le / M T s g 14 ≡ 10 14 cm 2 s − 1 -this work: NSCool code (Page 2009) applying standard PCY envelope (Potekhin et al. 1997) Yakovlev et al. (2004)

  6. Simple approximation dh ( ˙ M ) = L ∞ γ ( T s ) + L ∞ ν ( T i ) L ∞ dh ∝ ˙ γ ∝ ( T s ) 4 T s ∝ ( T i ) 1 / 2 L ∞ L ∞ M γ ∝ ( T i ) 2 L ∞ γ ∝ ˙ -if neutrino luminosity is negligible � L ∞ dh ≈ L ∞ M -when neutrino luminosity takes over � ν ∝ ˙ L ∞ dh ≈ L ∞ M ≈ 3 γ ) 4 ∝ ˙ � L slow 4 π R 3 · Q slow T 8 9 ≡ N slow T 8 ( L ∞ M 9 ν → � ν ( T i ) = L ∞ = 3 γ ) 3 ∝ ˙ L fast 4 π R 3 p · Q fast T 6 9 ≡ N fast T 6 � ( L ∞ M 9 ν

  7. Simple approximation On the diagram, γ − ˙ L ∞ M dh ( ˙ M ) = L ∞ γ ( T s ) + L ∞ ν ( T i ) L ∞ two limiting cases � dh ∝ ˙ γ ∝ ( T s ) 4 T s ∝ ( T i ) 1 / 2 L ∞ L ∞ M i) linear behavior � ii) power law; sensitive to γ ∝ ( T i ) 2 L ∞ neutrino emissivity γ ∝ ˙ -if neutrino luminosity is negligible � L ∞ dh ≈ L ∞ M -when neutrino luminosity takes over � ν ∝ ˙ L ∞ dh ≈ L ∞ M ≈ 3 γ ) 4 ∝ ˙ � L slow 4 π R 3 · Q slow T 8 9 ≡ N slow T 8 ( L ∞ M 9 ν → � ν ( T i ) = L ∞ = 3 γ ) 3 ∝ ˙ L fast 4 π R 3 p · Q fast T 6 9 ≡ N fast T 6 � ( L ∞ M 9 ν

  8. Heating curves Heinke et al. (2010) -Thermal equilibrium dh ( ˙ M ) = L ∞ γ ( T s ) + L ∞ ν ( T i ) L ∞ observables -Theoretical prediction � specify EoS, composition, light element amount, superfluidity gaps and NS mass -Observation � lower surface luminosity at the same accretion rate � ⇔ heavy stars cool more efficiently

  9. Photon vs. neutrino cooling -photon emission Wijnands et al. (2012) Heating: H = (Q /m ) M Neutrino nuc u regime: faint NSs, ind. cooling of internal structure � Slow: VFXTs Brems. -neutrino emission regime: warmer NSs � MUrca PBF MMUrca L ν ≈ L dh � L γ L (erg s ) � � 1 Photon cooling Fast: 1) slow neutrino Kaon emission in low- and q Pion intermediate-mass NSs � DUrca ) 3 2) fast emission Log (yrs) = 1(0) ) ( 4 4 ( 5 mechanisms dominate in high-mass NSs ) h 1 � t ) ( 2 -if heat deposited as 1~2 MeV/ 2 ( 3 nucleon, most SXRTs are at the neutrino stage: probe interior � 1 M (M yr )

  10. Neutrino emission mechanism -Hadronic matter Page et al. (2009) Neutrino Emissivity � Process (erg cm − 3 s − 1 ) (optimum) (unsuppressed) MUrca mUrca ∼ 10 21 T 8 PBF 9 ∼ 10 19 − 10 20 T 8 brems. 9 ∼ 10 27 T 6 dUrca 9 pair-breaking ∼ 10 19 − 10 21 T 7 max formation T min T 9 c c -Pairing in nucleonic SF: suppresses Urca processes but trigger PBF

  11. Equations of state -Within nucleons-only model Property APR HHJ SLy4 NL3 symmetry energy 32.6 32.0 32.0 37.3 S 0 (MeV) L = 3 n 0 [ dS 0 / dn ] n 0 (MeV) 60 67.2 45.9 118.2 dUrca threshold n dU B (fm − 3 ) 0.77 0.57 1.42 0.21 maximum density n max (fm − 3 ) 1.12 1.02 1.21 0.68 dUrca onset mass (M � ) 2.01 1.87 2.03 0.82 maximum mass (M � ) 2.18 2.17 2.05 2.77 radius of heaviest star (km) 10.18 10.98 9.96 13.65 -Given EoS, specifying the mass designates possible cooling channels

  12. Stellar superfluids outer core inner core Page et al. (2009) neutron 1 S 0 3 2 1 Neutron P T Proton S 0 Crust Core c GIPSF BCLL GC CCY NS WAP CCDK b T SFB a AO T -density/radial profiles of the SF critical temperature remain uncertain � inside the star, regions where undergo pairing-induced T i ≤ T crit ( r ) suppression of Urca neutrinos � PBF neutrino emissions: most noticeable at T i ≈ T crit ( r ) → presence of SF alters the dominant neutrino emission mechanism

  13. Theoretical prediction -dichotomy of thermal states of SXRTs: separated by dUrca onset mass � -PBF: test between mild and vanishing neutron triplet superfluidity 3 P 2

  14. Light-element residue -APR/HHJ EoS; vanishing neutron gap; dUrca in massive stars (cold) � 3 P 2 -tune light-element layer thickness i) cover more luminosity range � ii) help explain hottest Aquila X-1

  15. Stringent constraints -dUrca: phenomenological shifting � and broadening � n dU B → β n dU � dU → R dU � dU B ν ν effects -need early dUrca onset + small SF gaps to explain extremely cold sources in SAX J1808.4-3658 (arrow) and 1H 1905+000 (double arrows)

  16. Statistical analysis -Fit to luminosity data of the hottest and coldest source � ( L 1808 , L Aql ) -Input parameters � two NS masses � ( M 1808 , M Aql ) dUrca onset characterization � n dU B (1 − α ) ≥ n sat EoS: nuclear model + polytropes above twice saturation density � ( K , Γ ) ε Γ − (2 ε 0 ) Γ � � P ( ε ) = P NM ( ε ) + Θ ( ε − 2 ε 0 ) K � light-element layer thickness � ( η Aql , Q ) (for Aql X-1, set to zero for SAX J1808) � energy release per nucleon in deep crustal heating � cps , k peak cnt , k peak p 1 S 0 : [ T max Gaussian functions � n 3 P 2 : [ T max F p , ∆ k F p ] F n , ∆ k F n ] �

  17. Results & connections to… -Example: SLy4 EoS + polytropes; fit to data ( L 1808 , L Aql ) nuclear physics � dUrca threshold , anti-correlated with derivative of Esym � n dU B (1 − α ) ∼ 3 n sat deep crustal heating energy , can vary with multicomponent � Q = 1 ∼ 1.3 MeV ⇔ softening at higher densities lower L, or other degrees of freedom? 0 . 8 1 . 5 0 . 6 105 270 270 0 . 7 0 . 5 240 240 90 1 . 4 0 . 6 210 210 75 0 . 4 0 . 5 180 180 1 . 3 α dUrca 60 150 150 0 . 4 Q Γ 0 . 3 120 120 45 1 . 2 0 . 3 0 . 2 90 90 30 0 . 2 60 1 . 1 60 0 . 1 15 0 . 1 30 30 0 . 0 0 1 . 0 0 0 . 0 0 0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 − 18 − 16 − 14 − 12 − 10 − 8 − 6 − 5 − 4 − 3 − 2 − 1 0 1 2 (fm − 3 ) n dUrca log η K B

  18. Results & connections to… -Example: SLy4 EoS + polytropes; fit to data ( L 1808 , L Aql ) observation � jointly test SF from cooling isolated neutron stars � constraints from mass estimate, in particular 1808 � update surface luminosity and mean accretion rate other studies � 10 . 0 2 . 6 pion condensation � 54 270 2 . 4 9 . 5 48 240 (Matsuo et al. 2016) � 2 . 2 42 210 9 . 0 analytical approx. � 2 . 0 36 180 ( K ) M AqX1 (M � ) log T p 1 S 0 30 150 8 . 5 1 . 8 (Ofengeim et al. 2016) � c 24 120 1 . 6 NS mass distribution � 8 . 0 90 18 1 . 4 60 12 (Beznogov et al. 2015) � 7 . 5 1 . 2 30 6 …future work 7 . 0 0 1 . 0 0 7 . 0 7 . 5 8 . 0 8 . 5 9 . 0 9 . 5 10 . 0 1 . 0 1 . 2 1 . 4 1 . 6 1 . 8 2 . 0 2 . 2 2 . 4 log T n 3 P 2 M 1808 (M � ) ( K ) c

  19. Summary Thermal states of accreting NSs in SXRTs -surface luminosity at given accretion rate; same physics tested as in isolated stars � -observational constraint: hottest/coldest star; possible mass & radius measurement Probe properties of dense matter -nuclear matter EoSs; direct Urca threshold � -neutron star crust composition and heating � -light-element accreted envelope � arXiv:1702.08452 -proton and neutron superfluidity � -exotic matter (future work)

  20. THANK YOU! Q & A

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend