thermal phase transition at the 2 loop level beyond
play

Thermal phase transition at the 2-loop level beyond temperature - PowerPoint PPT Presentation

Thermal phase transition at the 2-loop level beyond temperature expansions Eibun Senaha (Nagoya U, E-ken) Feb. 14, 2014 @U of Toyama in collaboration with Koichi Funakubo (Saga U) Ref. PRD87, 054003 (2013) Outline Motivation A tractable


  1. Thermal phase transition at the 2-loop level beyond temperature expansions Eibun Senaha (Nagoya U, E-ken) Feb. 14, 2014 @U of Toyama in collaboration with Koichi Funakubo (Saga U) Ref. PRD87, 054003 (2013)

  2. Outline Motivation A tractable calculation scheme for 2-loop effective potential at finite T. Application to thermal phase transition Summary

  3. Motivation ❒ 1 st -order electroweak phase transition (EWPT) is necessary for successful electroweak baryogenesis (EWBG). scalar e.g. ❒ Sunset diagram can change strength of 1 st - vector order EWPT. (e.g. stop-stop-gluon in the MSSM) Complication scalar ∼ T 2 ❒ Thermal resummation: dominant at high T. - such thermal corrections have to be resummed. − 1 − 1 ❒ Noncovariant: D µ ν ( p ) = L ( T ) L µ ν ( p ) + T ( T ) T µ ν ( p ) , p 2 − m 2 p 2 − m 2 L μν , T μν are projections: T ij = g ij − p i p j (in thermal rest frame) T 00 = T 0 i = T i 0 = 0 , − p 2 , P µ ν = g µ ν − p µ p ν (4dim. transverse) p µ T µ ν = p µ L µ ν = 0 L µ ν = P µ ν − T µ ν , p 2 ,

  4. ❒ standard calculation methods: - Effective theory (Hard Thermal Loop, etc) - High-temperature expansion (HTE) ❒ HTE has been exclusively used in the EWBG calculation. 40 30 HTE formula: 20 K HTE ( a ) = − π 2 10 3 (ln a 2 + 3 . 48871) a=m/T 0 [R.R.Parwani, PRD45, 4695 (1992)] -10 -20 ❒ Approximation breaks down around m/T=O(1) -30 0.001 0.01 0.1 1 10 ❒ This raise a question about the reliability of a the EWPT analysis in the MSSM. Our aim: to devise a tractable calculation scheme beyond HTE.

  5. ❒ standard calculation methods: - Effective theory (Hard Thermal Loop, etc) - High-temperature expansion (HTE) region relevant to EWBG ❒ HTE has been exclusively used in the EWBG calculation. 40 30 HTE formula: 20 K HTE ( a ) = − π 2 10 3 (ln a 2 + 3 . 48871) a=m/T 0 [R.R.Parwani, PRD45, 4695 (1992)] -10 -20 ❒ Approximation breaks down around m/T=O(1) -30 0.001 0.01 0.1 1 10 ❒ This raise a question about the reliability of a the EWPT analysis in the MSSM. Our aim: to devise a tractable calculation scheme beyond HTE.

  6. Abelian-Higgs model ❒ As an illustration, we consider Abelian-Higgs model. L = − 1 4 F µ ν F µ ν + | D µ Φ | 2 − V 0 ( | Φ | 2 ) where F µ ν = ∂ µ A ν − ∂ ν A µ , D µ Φ = ( ∂ µ − ieA µ ) Φ scalar potential: V 0 ( | Φ | 2 ) = − ν 2 | Φ | 2 + λ 4 | Φ | 4 scalar fields: 1 � � Φ ( x ) = v + h ( x ) + ia ( x ) √ 2 field-dependent masses: h = − ν 2 + 3 λ a = − ν 2 + λ m 2 4 v 2 , m 2 4 v 2 , m 2 A = e 2 v 2 .

  7. Resummed perturbation theory ❒ Dominant thermal corrections are taken into account. ❒ We adopt a resummation method in which thermal masses are added and subtracted in the Lagrangian. L B ( R ) : bare (renormalized) Lagrangian, [Buchmuller et al, NPB407 (’93) 387 .] L B = L R + L CT L CT : counterterms Φ Φ † Φ + 1 2 A µ � � → L R − ∆ m 2 ∆ m 2 L L µ ν ( i ∂ ) + ∆ m 2 T T µ ν ( i ∂ ) A ν Φ Φ † Φ − 1 2 A µ � � + L CT + ∆ m 2 ∆ m 2 L L µ ν ( i ∂ ) + ∆ m 2 T T µ ν ( i ∂ ) A ν Explicitly, Φ = 3 e 2 + λ L = e 2 ∆ m 2 T 2 , ∆ m 2 ∆ m 2 3 T 2 T = 0 , 12

  8. Resummed perturbation theory ❒ Dominant thermal corrections are taken into account. ❒ We adopt a resummation method in which thermal masses are added and subtracted in the Lagrangian. L B ( R ) : bare (renormalized) Lagrangian, [Buchmuller et al, NPB407 (’93) 387 .] L B = L R + L CT L CT : counterterms Φ Φ † Φ + 1 2 A µ � � → L R − ∆ m 2 ∆ m 2 L L µ ν ( i ∂ ) + ∆ m 2 T T µ ν ( i ∂ ) A ν Φ Φ † Φ − 1 2 A µ � � + L CT + ∆ m 2 ∆ m 2 L L µ ν ( i ∂ ) + ∆ m 2 T T µ ν ( i ∂ ) A ν Explicitly, Φ = 3 e 2 + λ L = e 2 ∆ m 2 T 2 , ∆ m 2 ∆ m 2 3 T 2 T = 0 , 12

  9. Resummed perturbation theory ❒ Dominant thermal corrections are taken into account. ❒ We adopt a resummation method in which thermal masses are added and subtracted in the Lagrangian. L B ( R ) : bare (renormalized) Lagrangian, [Buchmuller et al, NPB407 (’93) 387 .] L B = L R + L CT L CT : counterterms Φ Φ † Φ + 1 2 A µ � � → L R − ∆ m 2 ∆ m 2 L L µ ν ( i ∂ ) + ∆ m 2 T T µ ν ( i ∂ ) A ν Φ Φ † Φ − 1 2 A µ � � + L CT + ∆ m 2 ∆ m 2 L L µ ν ( i ∂ ) + ∆ m 2 T T µ ν ( i ∂ ) A ν new counterterm Explicitly, Φ = 3 e 2 + λ L = e 2 ∆ m 2 T 2 , ∆ m 2 ∆ m 2 3 T 2 T = 0 , 12

  10. Resummed propagators 1 1 ∆ h ( p ) = ∆ a ( p ) = h ( T ) , a ( T ) , p 2 − m 2 p 2 − m 2 − 1 − 1 D µ ν ( p ) = L ( T ) L µ ν ( p ) + T ( T ) T µ ν ( p ) , p 2 − m 2 p 2 − m 2 m 2 h,a ( T ) = m 2 h,a + ∆ m 2 m 2 L,T ( T ) = m 2 A + ∆ m 2 L,T Φ With these, we compute 1- and 2-loop effective potentials. 1-loop resummed potential R ( v ; T ) = 1 + 1 � � (2 π nT ) 2 + k 2 + ¯ (2 π nT ) 2 + k 2 + ¯ V (1) m 2 m 2 � � � � � � ln h ( T ) ln a ( T ) 2 2 k k + 1 + ( D � 2)1 � � (2 π nT ) 2 + k 2 + ¯ (2 π nT ) 2 + k 2 + ¯ m 2 m 2 � � � � � � ln L ( T ) ln T ( T ) 2 2 k k � ¯ � ¯ � ¯ � ¯ � T 4 m 2 m 2 m 2 m 2 � � � � �� h ( T ) a ( T ) L ( T ) T ( T ) + I B + I B + 2 I B I B 2 π 2 T 2 T 2 T 2 T 2 At 1-loop level, there is no complication to obtain the resummed effective potential.

  11. 2-loop resummed sunset diagrams Resummed SSV and SVV type diagrams ∆ h D µ ν � � D R k µ k ν D µ ν ( q ) ∆ 1 ( k ) ∆ 2 ( k + q ) SSV ( m 1 , m 2 ; m L , m T ) = − 4 � � k q ∆ a D µ ν ∆ h � � D µ ν ( k ; m 1 ) D µ ν ( q ; m 2 ) ∆ ( k + q ) D R SV V ( m ; m 1 L , m 1 T ; m 2 L , 2 T ) = − 4 � � k q noncovariant due to T µ ν ( k ) , L µ ν ( k ) It is not easy to evaluate the divergence and finite parts.

  12. Devised gauge boson propagator Resummed gauge boson propagator is devised as follows. Using P µ ν ( p ) = g µ ν − p µ p ν = T µ ν ( p ) + L µ ν ( p ), L µ ν ( p ) or T µ ν ( p ) can be elimi- p 2 nated. − 1 � − 1 − 1 � T µ ν ( p ) ≡ D r =0 D µ ν ( p ) = P µ ν ( p ) + µ ν ( p ) , − p 2 − m 2 p 2 − m 2 p 2 − m 2 L T L − 1 � − 1 − 1 � L µ ν ( p ) ≡ D r =1 D µ ν ( p ) = P µ ν ( p ) + µ ν ( p ) . − p 2 − m 2 p 2 − m 2 p 2 − m 2 T L T In general, ( r ∈ R ) D µ ν ( p ) = (1 − r ) D r =0 µ ν ( p ) + r D r =1 µ ν ( p ) � − (1 − r ) � � � � − 1 − 1 − r � = + P µ ν ( p ) + T µ ν ( p ) − rP µ ν ( p ) . − p 2 − m 2 p 2 − m 2 p 2 − m 2 p 2 − m 2 L T T L covariant noncovariant

  13. Devised gauge boson propagator The loop calculation is simplified if r is determined in the following way. r = d − 2 g µ ν � � T µ ν ( p ) − rP µ ν ( p ) = 0 d − 1 D µ ν ( p ) = D cov µ ν ( p ) + δ D µ ν ( p ) , � P µ ν ( p ) � − 1 + − ( d − 2) D cov µ ν ( p ) = d − 1 , p 2 − m 2 p 2 − m 2 L T � − 1 − 1 � � T µ ν ( p ) − d − 2 � δ D µ ν ( p ) = d − 1 P µ ν ( p ) . − p 2 − m 2 p 2 − m 2 T L µ ν ( p ) = p µ δ D µ ν ( p ) = 0 and g µ ν δ D µ ν ( p ) = 0 p µ D cov

  14. Decomposition Diagrams involving the gauge boson can be decomposed in the following way. covariant part D cov D µ ν µ ν = resummed diagrams -> renormalization is possible +1 � � µ ν � ˆ Π ( q ) − ∆ m 2 L L ( q ) − ∆ m 2 � T T ( q ) δ D µ ν ( q ) 2 q noncovariant sector

  15. Decomposition Diagrams involving the gauge boson can be decomposed in the following way. covariant part D cov D µ ν µ ν = resummed diagrams -> renormalization is possible +1 � � µ ν � ˆ Π ( q ) − ∆ m 2 L L ( q ) − ∆ m 2 � T T ( q ) δ D µ ν ( q ) 2 q from thermal CT noncovariant sector

  16. In general, self-energy can be written as + Π S ( q ) q µ u T ν + q ν u T Π µ ν ( q ) = Π L ( q ) L µ ν ( q ) + Π T ( q ) T µ ν ( q ) + Π G ( q ) q µ q ν µ q 2 � q 2 µ = u µ − q µ ( u · q ) /q 2 with u µ = (1 , 0 ). where u T � � g µ ν � q µ q ν T=0: Π T =0 � Π 0 ( q ) Π T =0 µ ν ( q ) δ D µ ν ( q ) = 0 µ ν q 2 � � ( q 0 = 0 , q → 0) L,T + � 2 � ( � ) T ≠ 0: Π T � =0 ∆ m 2 µ � ( q ) → L,T ( T ) L µ � , T µ � , Finally, the noncovariant part is reduced to � D µ � ( q ) → m 2 L − m 2 1 � � µ � � � � � ( � ) T ( T ) − � ( � ) ˆ Π ( q ) − ∆ m 2 L L ( q ) − ∆ m 2 T � T T ( q ) L ( T ) + O ( � ) 48 � 2 2 q finite! To leading order no v-dependence. -> no effect on phase transition.

  17. Application

  18. Toy model ❒ We study the thermal phase transition in the MSSM-like toy model. stop and gluon-like particles L = L Abelian − Higgs + ∆ L L Abelian − Higgs = − 1 4 F µ ν F µ ν + ( D µ Φ ) ∗ D µ Φ − V ( | Φ | 2 ) , 1 V ( | Φ | 2 ) = − ν 2 | Φ | 2 + λ 4 | Φ | 4 , D µ Φ = ( ∂ µ − ieA µ ) Φ , Φ = ( v + h + ia ) . √ 2 ˜ ∆ L = 1 λ 4( ∂ µ G ν − ∂ ν G µ ) 2 + | ( ∂ µ − ig 3 G µ )˜ 0 | ˜ 4 | ˜ t | Φ | 2 | ˜ t | 2 − m 2 t | 2 − t | 4 − y 2 t | 2 . Note: gluon-like particle is a U(1) gauge boson ❒ Landau gauge ξ =0 is taken. v-dependent masses: 0 + y 2 µ � h = − ν 2 + 3 λ µ � a = − ν 2 + λ µ � m 2 v 2 , m 2 4 v 2 , m 2 A = e 2 µ � v 2 , m 2 t = m 2 v 2 , m 2 ¯ ¯ ¯ ¯ G = 0 . ˜ 4 2

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend