thermal conductive polymers thermal conductive polymers
play

Thermal Conductive Polymers Thermal Conductive Polymers gen-Nuernb - PowerPoint PPT Presentation

INSTITUTE OF POLYMER TECHNOLOGY Prof. Dr.-Ing. Dietmar Drummer berg Thermal Conductive Polymers Thermal Conductive Polymers gen-Nuernb and their Benefit for MID ersity Erlan 9 th International Congress Molded Interconnect Devices, Fuerth,


  1. INSTITUTE OF POLYMER TECHNOLOGY Prof. Dr.-Ing. Dietmar Drummer berg Thermal Conductive Polymers Thermal Conductive Polymers gen-Nuernb and their Benefit for MID ersity Erlan 9 th International Congress Molded Interconnect Devices, Fuerth, 29./30.09.2010 ogy – Unive Dipl.-Wirtsch.-Ing. Florian Ranft Dipl -Ing Christoph Heinle Dipl.-Ing. Christoph Heinle mer Technolo Prof. Dr.-Ing. Dietmar Drummer Dipl.-Ing. Johannes Hoerber, Institute FAPS Prof. Dr.-Ing. Joerg Franke, Institute FAPS Prof. Dr. Ing. Joerg Franke, Institute FAPS te of Polym Prof. Dr.-Ing. XYZ Institute of Polymer Technology University Erlangen-Nuernberg A Am Weichselgarten 9 W i h l 9 Institu 91058 Erlangen Germany

  2. Outline berg � Motivation gen-Nuernb � Thermal Conductive Polymers (TCP) ersity Erlan � Investigation and Material Properties � Results ogy – Unive � TCP and Solderability mer Technolo � TCP � TCP and Application Reliability d A li ti R li bilit � TCP and Thermal Management te of Polym � Summary Institu 2

  3. Motivation Manufacturing New Fields of Application berg gen-Nuernb i j injection molding ti ldi automotive / medical � mechanical requirements high reliability and harsh environmental conditions � thermal requirements ersity Erlan � electrical requirements metallization source: lanxess/Harting Mitronics ogy – Unive � physical requirements power electronics / � chemical requirements lighting technologies mer Technolo adapted thermal soldering management � geometrical requirements � environmental sustainability � environmental sustainability te of Polym source: FAPS/TECHNOMID Institu � suitable substrate materials satisfying a wide range of technical requirements are necassary for spreading the MID-technology 3

  4. Motivation Thermal load on substrate material berg gen-Nuernb requried temperature profiles for reflow soldering reflow soldering: Chemical aging Chemical aging ersity Erlan � degradation of molecular chains ogy – Unive � cross-linking � … mer Technolo Physical aging Dimensional stability under heat � post-cristallization � warpage and distortion � relaxation l ti � partial melting at edges etc. te of Polym � … � … Institu � malfunction of MID because of thermal loads during manufacturing and application 4

  5. Thermal Conductive Polymers (TCP) Thermal Conductive Polymers for: berg gen-Nuernb Effects: dimensional accuracy dimensional accuracy ersity Erlan � improving mechanical stability dimensional stability � homogeneous temperature homogeneous temperature ogy – Unive distribution reduction of Hot-Spots � low thermal expansion mer Technolo � heating and cooling of electronic components te of Polym Potentials from the view of manufacturing and economics: � enhanced spectrum of materials � integration of additional f features t Institu � enlargement of the process latitude 5

  6. Thermal Conductive Polymers (TCP) Filler performance berg Combining advantages of gen-Nuernb materials and processes increasing electrical and thermal conductivity ersity Erlan attainment of magnetical function Thermoplastic matrices Fillers changing mechanical properties g g p p Powder Powder ogy – Unive Fibers Flakes Injection Molding ... mer Technolo Additives Stabilizers Functionalized Antioxidants compounds Sli Slip additives dditi te of Polym ... Institu � polymer preparation with different filler systems enables innovative substrate materials for MID with additional functions 6

  7. Thermal Conductive Polymers (TCP) berg Suppliers: gen-Nuernb � Albis Plastic GmbH copper- � Polyone compounds graphite- graphite � Lehmann & Voss & Co � Lehmann & Voss & Co. ersity Erlan compounds � Cool Polymers Inc. k � RTP Company � Lati Industria Thermoplastici Lati Industria Thermoplastici ogy – Unive � … Polymers: y mer Technolo PA6, PA66, PBT, PPS… aluminum- compounds ceramic - compounds compounds te of Polym Institu � functionalized compounds with thermal conductivities up to 20 Wm -1 K -1 based on various basic polymers are available 7

  8. Investigation � thermal conductivity � filler shape berg � heat capacity � filler size gen-Nuernb Material � thermal expansion � filler fraction � … � … ersity Erlan polymer + thermal conductive filler ogy – Unive thermal management mechanical behaviour mer Technolo thermophysical and –mechanical properties ^^^^^^^^^^^^^^^^ te of Polym Construction Process � component size p � orientation filler Institu � ribs and beadings � cooling conditions � … � … 8

  9. Investigation Molded Interconnect Test Specimens berg Devices Devices gen-Nuernb plate heat sink ersity Erlan ogy – Unive 50 x 55 x 2 mm 3 base: 80 x 60 x 2 mm 3 ribs (height): 25 mm mer Technolo Thermal Conductive Polymers te of Polym matrix: filler: polyamide 66 aluminum oxide Al 2 O 3 (Durethan A30S) (Alcoa CL 3000FG) Institu k = 0,2 – 0,4 Wm -1 K -1 k = 20 – 40 Wm -1 K -1 20 μ m 9

  10. Thermal behavior – Conductivity berg gen-Nuernb ersity Erlan ogy – Unive mer Technolo neat PA66 te of Polym Institu � addition of 50 vol.-% aluminum oxide increases the thermal conductivity approx. from 0,3 to 2,0 Wm -1 K -1 at room temperature (T = 23 °C) 10

  11. Mechanical behavior – Stiffness berg gen-Nuernb ersity Erlan ogy – Unive mer Technolo te of Polym Institu � particle modification in high concentrations as a method for increasing the stiffness of MID substrate materials 11

  12. Rheological behavior – Flowability berg plate/plate - rheometer gen-Nuernb ersity Erlan ogy – Unive mer Technolo v v te of Polym Institu � increasing viscosity and suppressed melt flow in consequence of growing filler content 12

  13. Thermomechanical behavior – Thermal expansion 1 st heating berg gen-Nuernb 0 -6 /°C] ersity Erlan nsion α [1 rmal expan ogy – Unive mer Technolo ther te of Polym filler fraction Φ [vol.-%] Institu � considerable decline of thermal expansion below and above glass transition temperature with increasing filler content 13

  14. TCP and Solderability soldering method: forced convection berg solder alloy: SnAgCu (lead free) solder alloy: SnAgCu (lead free) gen-Nuernb PA66 + 50 vol.-% Al 2 O 3 235°C 250°C 235°C 240°C 250°C 290°C 280°C 70°C 40°C ersity Erlan neat PA66 210°C 225°C 210°C 215°C 225°C 290°C 265°C 70°C 40°C consistent T T ogy – Unive surface T activation = 170°C T liquidus T li = 217°C 217 C mer Technolo id T maximum = 240°C te of Polym neat PA66 210°C 225°C 210°C 215°C 225°C 290°C 265°C 70°C 40°C PA66 + 50 vol.-% Al 2 O 3 235°C 250°C 235°C 240°C 250°C 290°C 280°C 70°C 40°C Institu � adapted temperature settings of the reflow oven to comply with the required processing guidelines due to the specific material properties of the substrate 14

  15. Results – Solderability berg gen-Nuernb ersity Erlan ogy – Unive mer Technolo te of Polym Institu � homogeneous component heating and evenly distributed solder joints quality at all levels due to high heat flux 15

  16. Results – Solderability berg 50 gen-Nuernb p1 55 p2 p3 ersity Erlan ogy – Unive mer Technolo te of Polym Institu � higher stiffness combined with a uniform lower shrinkage cause reduced warpage after forced convection soldering 16

  17. TCP and Application Reliability berg stamping die with hot-embossed gen-Nuernb conductor layout plate specimens 2 1 3 3 0 5 0,5 ersity Erlan ogy – Unive 55 50 60 mer Technolo 43 50 te of Polym optimized peel strength (> 1 N/mm) Institu � MID metallization with adhesive free stamping foils (CuSn/Bo) with a thick- ness of 35 µm via hot-embossing (T s = 255 °C / t s = 2,5 s / P s = 120 MPa) 17

  18. TCP and Application Reliability berg temperature shock temperature shock gen-Nuernb t h = 15 min test chamber ersity Erlan ogy – Unive mer Technolo te of Polym Institu � MID application reliability under enhanced thermal conditions verified by thermal shock testing (1.000 cycles each -40°C/+125°C) 18

  19. Results – Application Reliability berg gen-Nuernb highly filled PA66 - no detectable defects no detectable defects ersity Erlan ogy – Unive mer Technolo te of Polym Institu � cracks in hot-embossed copper metallization as failure mechanism at neat PA66 after thermal cycling due to high thermomechnical stress 19

  20. TCP and Thermal Management 3D-MID: an innovative assembly & berg heat sink concept heat sink concept gen-Nuernb i t interconnection ti metallization & structuring structuring ersity Erlan circuit carrier production ogy – Unive placement and placement and mer Technolo reflow soldering hot embossing te of Polym injection molding Institu � thermal management of electronic components via heat dissipation by introducing TCP as innovative MID substrate materials 20

  21. TCP and Thermal Management front side front side K -1 ) berg -1 ) gen-Nuernb 5 Wm -1 K - 32 Wm -1 ( λ ≈ 0,35 er ( λ ≈ 2, ersity Erlan ogy – Unive ctive fille ss fibers back side back side mer Technolo 66 + glas + condu PA6 PA66 te of Polym Institu � 3D specimen featuring surface area for circuitry (front side) and integrated cooling ribs for convective heat transfer (back side) 21

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend