theoretical background for aerodynamic shape optimization
play

Theoretical Background for Aerodynamic Shape Optimization John C. - PowerPoint PPT Presentation

Theoretical Background for Aerodynamic Shape Optimization John C. Vassberg Antony Jameson Boeing Technical Fellow T. V. Jones Professor of Engineering Advanced Concepts Design Center Dept. Aeronautics & Astronautics Boeing Commercial


  1. Theoretical Background for Aerodynamic Shape Optimization John C. Vassberg Antony Jameson Boeing Technical Fellow T. V. Jones Professor of Engineering Advanced Concepts Design Center Dept. Aeronautics & Astronautics Boeing Commercial Airplanes Stanford University Long Beach, CA 90846, USA Stanford, CA 94305-3030, USA Von Karman Institute Brussels, Belgium 7 April, 2014 Vassberg & Jameson, VKI Lecture-I, Brussels, 7 April, 2014 1

  2. LECTURE OUTLINE • INTRODUCTION • THEORETICAL BACKGROUND – SPIDER & FLY – BRACHISTOCHRONE • SAMPLE APPLICATIONS – MARS AIRCRAFT – RENO RACER – GENERIC 747 WING/BODY • DESIGN-SPACE INFLUENCE Vassberg & Jameson, VKI Lecture-I, Brussels, 7 April, 2014 2

  3. THE SPIDER & THE FLY • PROBLEM STATEMENT • PROBLEM SET-UP – COST FUNCTION – DESIGN SPACE – GRADIENT & HESSIAN • SEARCH METHODS – STEEPEST DESCENT – NEWTON ITERATION – NASH EQUILIBRIUM • EXACT SOLUTION Vassberg & Jameson, VKI Lecture-I, Brussels, 7 April, 2014 3

  4. THE SPIDER & THE FLY Block Size 4" x 4" x 12" Path Length 16.00" SPIDER FLY PATH Obvious Local-Minimum Path between Spider and Fly. Vassberg & Jameson, VKI Lecture-I, Brussels, 7 April, 2014 4

  5. THE SPIDER & THE FLY Block Size 4" x 4" x 12" Path Length Sqrt(250.0)" ~ 15.81" SPIDER FLY PATH Non-Obvious Global-Minimum Path between Spider and Fly. Vassberg & Jameson, VKI Lecture-I, Brussels, 7 April, 2014 5

  6. SPIDER-FLY DESIGN SPACE Path type to optimize is partitioned into four segments. Path described as the piecewise linear curve that connects: (2 , 0 , 3) , ( X, 0 , 4) , (4 , Y, 4) , (4 , 12 , Z ) , (2 , 12 , 1) . Three design variables ( X, Y, Z ), constrained by: 0 4 , ≤ X ≤ 0 12 , ≤ Y ≤ 0 4 . ≤ Z ≤ Vassberg & Jameson, VKI Lecture-I, Brussels, 7 April, 2014 6

  7. SPIDER-FLY COST FUNCTION Segment Lengths: 1 + ( X − 2) 2 � 1 2 , � = S 1 ( X − 4) 2 + Y 2 � 1 2 , � = S 2 ( Y − 12) 2 + ( Z − 4) 2 � 1 2 , � = S 3 � 1 ( Z − 1) 2 + 4 2 . � = S 4 Total Path Length: I ≡ S = S 1 + S 2 + S 3 + S 4 . Minimize I Subject to Constraints. Vassberg & Jameson, VKI Lecture-I, Brussels, 7 April, 2014 7

  8. SPIDER-FLY GRADIENT First Variation of Cost Function: δI = I X δX + I Y δY + I Z δZ ≡ G δ X ( X − 2) + ( X − 4) = I X S 1 S 2 G ≡ Gradient V ector S 2 + ( Y − 12) Y = I Y S 3 X ≡ Design Space V ector ( Z − 4) + ( Z − 1) = I Z S 3 S 4 Vassberg & Jameson, VKI Lecture-I, Brussels, 7 April, 2014 8

  9. SPIDER-FLY HESSIAN MATRIX + Y 2 1 = I XX S 3 S 3 1 2 I Y X = (4 − X ) Y = I XY   I XX I Y X I ZX S 3 2   = I ZX = 0 I XZ     ( X − 4) 2 + ( Z − 4) 2 A = I XY I Y Y I ZY ,   = I Y Y   S 3 S 3   2 3   = ( Y − 12)(4 − Z ) I XZ I Y Z I ZZ = I Y Z I ZY S 3 3 ( Y − 12) 2 + 4 I ZZ = S 3 S 3 3 4 Vassberg & Jameson, VKI Lecture-I, Brussels, 7 April, 2014 9

  10. FINITE-DIFFERENCE APPROXIMATION Consider the Taylor series expansion of a function f . f ( x + ∆ x ) = f ( x )+ ∆ x f x ( x )+ ∆ x 2 f xx ( x )+ . . . + ∆ x n n ! f n ( x )+ . . . 2 A first-order accurate approximation of f x ( x ) can be determined with the forward differencing formula f x ( x ) ≃ f ( x + ∆ x ) − f ( x ) . ∆ x Here ∆ x is a small perturbation of the X coordinate. Vassberg & Jameson, VKI Lecture-I, Brussels, 7 April, 2014 10

  11. FINITE-DIFFERENCE APPROXIMATION In the case of the spider-fly, let’s approximate I X . I X ≃ I ( X + h, Y, Z ) − I ( X, Y, Z ) h For example, using h = 10 − 3 at ( X, Y, Z ) = (2 , 6 , 2) gives: I X ≃ − 0 . 31565661, an error of about 0.1%. 2 The exact value of I X at this location is − 40 ≃ − 0 . 31622777. √ Vassberg & Jameson, VKI Lecture-I, Brussels, 7 April, 2014 11

  12. COMPLEX-VARIABLE APPROXIMATION Consider the Taylor series expansion of a complex function f . f ( x + ∆ x ) = f ( x )+ ∆ x f x ( x )+ ∆ x 2 f xx ( x )+ . . . + ∆ x n n ! f n ( x )+ . . . 2 A second-order accurate approximation of f x ( x ) can be found with the complex-variable formula f x ( x ) ≃ Im [ f ( x + ih )] . h Here ∆ x = ih is an imaginary perturbation of X . Vassberg & Jameson, VKI Lecture-I, Brussels, 7 April, 2014 12

  13. COMPLEX-VARIABLE APPROXIMATION In the case of the spider-fly, let’s approximate I X . I X ≃ Im [ I ( X + ih, Y, Z )] h For all h ≤ 10 − 3 at ( X, Y, Z ) = (2 , 6 , 2), we get: I X ≃ − 0 . 31622777. This is identical to the exact value to 8 significant digits. Vassberg & Jameson, VKI Lecture-I, Brussels, 7 April, 2014 13

  14. GRADIENT APPROXIMATION log 10 ( Error I X ) log 10 ( h ) Finite Difference Complex Variable -1 -1.244 -4.449 -2 -2.243 -6.449 -3 -3.243 -8.449 -4 -4.243 -10.449 -5 -5.243 -12.449 -6 -6.244 -14.449 -7 -7.192 -16.256 -8 -6.778 -16.256 -9 -5.977 -16.256 -10 -4.768 -16.256 Stability of Finite-Difference and Complex-Variable Methods Vassberg & Jameson, VKI Lecture-I, Brussels, 7 April, 2014 14

  15. GRADIENT APPROXIMATION Finite Difference vs Complex Variables 0 -2 -4 -6 log10 ( Error[Ix] ) -8 -10 -12 -14 Finite Difference -16 Complex Variables -18 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 log10 ( h ) Vassberg & Jameson, VKI Lecture-I, Brussels, 7 April, 2014 15

  16. SPIDER-FLY SEARCH METHODS Trajectory: X n +1 = X n + δ X n Steepest Descent: δ X n = − λG, λ > 0 δI n = G δ X n = − λG 2 ≤ 0 Newton Iteration: δ X n = − A − 1 G = − HG Vassberg & Jameson, VKI Lecture-I, Brussels, 7 April, 2014 16

  17. SPIDER-FLY SEARCH METHODS Rank-1 quasi-Newton: H n +1 = H n + ( P n )( P n ) T ( P n ) T δG n , where δG n = G n +1 − G n and P n = δ X n − H n δG n . Vassberg & Jameson, VKI Lecture-I, Brussels, 7 April, 2014 17

  18. SPIDER-FLY SEARCH METHODS Nash Equilibrium: minimize I ( X ⋆ , Y n , Z n ) I x ( X ⋆ , Y n , Z n ) = 0 X ⋆ , = > = > minimize I ( X n , Y ⋆ , Z n ) I x ( X n , Y ⋆ , Z n ) = 0 Y ⋆ , = > = > minimize I ( X n , Y n , Z ⋆ ) I x ( X n , Y n , Z ⋆ ) = 0 Z ⋆ . = > = > These reduce to: X ⋆ = 2(2 + Y n ) 12(4 − X n ) Z ⋆ = 4 − 3(12 − Y n ) Y ⋆ = (1 + Y n ) , (8 − X n − Z n ) , (14 − Y n ) . Update design vector: [ X n +1 , Y n +1 , Z n +1 ] T = [ X ⋆ , Y ⋆ , Z ⋆ ] T Vassberg & Jameson, VKI Lecture-I, Brussels, 7 April, 2014 18

  19. SPIDER-FLY INITIAL PATH  − 2  √     2 − 0 . 31623 40 X 0 = G 0 =   6 0 . 0  ≈ 0 . 0  ,  ,           ( − 3 1 2 − 0 . 02713  √ 40 + √ 5 )   1 . 14230 0 . 04743 0 . 0 A 0 ≈ 0 . 04743 0 . 03162 − 0 . 04743  ,    0 . 0 − 0 . 04743 0 . 50007 √ √ I 0 = (1 + 2 40 + 5) ≈ 15 . 88518 Vassberg & Jameson, VKI Lecture-I, Brussels, 7 April, 2014 19

  20. SPIDER-FLY INITIAL PATH Initial Path between Spider and Fly. Vassberg & Jameson, VKI Lecture-I, Brussels, 7 April, 2014 20

  21. SPIDER-FLY STEEPEST DESCENT 0 Step: 1.885 -1 -2 -3 LOG_10 ( GRMS ) -4 -5 -6 -7 -8 -9 0 0 50 100 150 200 250 300 Iteration Convergence of Gradient for Steepest Descent. Vassberg & Jameson, VKI Lecture-I, Brussels, 7 April, 2014 21

  22. SPIDER-FLY STEEPEST DESCENT 6.1 6.1 Top View Side View Baseline Baseline 6.0 6.0 5.9 5.9 5.8 5.8 5.7 5.7 5.6 5.6 5.5 Y 5.5 Y 5.4 5.4 5.3 5.3 5.2 5.2 5.1 5.1 5.0 5.0 Optimum Optimum 4.9 4.9 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.1 2.0 1.9 1.8 1.7 1.6 X Z Steepest-Descent Trajectory through Design Space. Vassberg & Jameson, VKI Lecture-I, Brussels, 7 April, 2014 22

  23. SPIDER-FLY NEWTON ITERATION 0 -1 -2 -3 LOG_10 ( GRMS ) -4 -5 -6 -7 -8 -9 0 0 1 2 3 4 Iteration Convergence of Gradient for Newton Iteration. Vassberg & Jameson, VKI Lecture-I, Brussels, 7 April, 2014 23

  24. SPIDER-FLY NEWTON ITERATION 6.1 6.1 Top View Side View Baseline Baseline 6.0 6.0 5.9 5.9 5.8 5.8 5.7 5.7 5.6 5.6 5.5 Y 5.5 Y 5.4 5.4 5.3 5.3 5.2 5.2 5.1 5.1 Optimum 5.0 5.0 Optimum 4.9 4.9 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.1 2.0 1.9 1.8 1.7 1.6 X Z Newton-Iteration Trajectory through Design Space. Vassberg & Jameson, VKI Lecture-I, Brussels, 7 April, 2014 24

  25. SPIDER-FLY NEWTON ITERATION X n Y n Z n I n n 0 2.000000 6.000000 2.000000 15.88518 1 2.319023 4.984009 1.641696 15.81167 2 2.333268 4.999744 1.666556 15.81139 3 2.333333 5.000000 1.666667 15.81139 Convergence of Newton Iteration on the Spider-Fly Problem. Vassberg & Jameson, VKI Lecture-I, Brussels, 7 April, 2014 25

  26. SPIDER-FLY RANK-1 QUASI-NEWTON 0 -1 -2 -3 LOG_10 ( GRMS ) -4 -5 -6 -7 -8 -9 0 0 1 2 3 4 5 6 7 8 9 10 Iteration Convergence of Gradient for Rank-1 quasi-Newton Iteration. Vassberg & Jameson, VKI Lecture-I, Brussels, 7 April, 2014 26

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend