the theory of languages
play

The Theory of Languages Highlights in London September 12-15, 2017 - PowerPoint PPT Presentation

The Theory of Languages Highlights in London September 12-15, 2017 Paul Brunet University College London Introduction Outline I. Introduction II. Free Representation III. Main results IV. Outlook Paul Brunet 2/18 Language Algebra


  1. The Theory of Languages Highlights in London September 12-15, 2017 Paul Brunet University College London

  2. Introduction Outline I. Introduction II. Free Representation III. Main results IV. Outlook Paul Brunet 2/18 Language Algebra

  3. Introduction Universal laws a ∪ b = b ∪ a (commutativity of union) a · ( b · c ) = ( a · b ) · c (associativity of concatenation) Paul Brunet 3/18 Language Algebra

  4. Introduction Universal laws ∀ Σ , ∀ a , b , c ⊆ Σ ⋆ a ∪ b = b ∪ a (commutativity of union) a · ( b · c ) = ( a · b ) · c (associativity of concatenation) Paul Brunet 3/18 Language Algebra

  5. Introduction Universal laws ∀ Σ , ∀ a , b , c ⊆ Σ ⋆ a ∪ b = b ∪ a (commutativity of union) a · ( b · c ) = ( a · b ) · c (associativity of concatenation) | e � | e ⋆ . e , f ∈ E X ::= 0 | 1 | a | e ∪ f | e ∩ f | e · f Paul Brunet 3/18 Language Algebra

  6. Introduction Universal laws ∀ Σ , ∀ a , b , c ⊆ Σ ⋆ a ∪ b = b ∪ a (commutativity of union) a · ( b · c ) = ( a · b ) · c (associativity of concatenation) | e � | e ⋆ . e , f ∈ E X ::= 0 | 1 | a | e ∪ f | e ∩ f | e · f Language equivalence Lang | = e ≃ f iff ∀ Σ , ∀ σ : X → P (Σ ⋆ ) , � σ ( e ) = � σ ( f ) . Paul Brunet 3/18 Language Algebra

  7. Introduction representation r : E X → R Paul Brunet 4/18 Language Algebra

  8. Introduction Effective representation r : E X → R Computable Decidable Paul Brunet 4/18 Language Algebra

  9. Introduction Effective free representation r : E X → R Computable Decidable r ( e ) = r ( f ) Lang | = e ≃ f Paul Brunet 4/18 Language Algebra

  10. Introduction Effective free representation r : E X → R Computable Decidable r ( e ) = r ( f ) Lang | = e ≃ f Ax ⊢ e = f Paul Brunet 4/18 Language Algebra

  11. Introduction Effective free representation r : E X → R Computable Decidable r ( e ) = r ( f ) Lang | = e ≃ f Ax ⊢ e = f Kleene Algebra, KA with Tests, Kleene lattices, Allegories, Monoids,... Paul Brunet 4/18 Language Algebra

  12. Introduction Outline I. Introduction II. Free Representation III. Main results IV. Outlook Paul Brunet 5/18 Language Algebra

  13. Free Representation Outline I. Introduction II. Free Representation III. Main results IV. Outlook Paul Brunet 6/18 Language Algebra

  14. Free Representation Example Lang | = ( 1 ∩ a ) · b ≃ b · ( 1 ∩ a ) Paul Brunet 7/18 Language Algebra

  15. Free Representation Example Lang | = ( 1 ∩ a ) · b ≃ b · ( 1 ∩ a ) Proof. Let σ : { a , b } → P (Σ ⋆ ) . Paul Brunet 7/18 Language Algebra

  16. Free Representation Example Lang | = ( 1 ∩ a ) · b ≃ b · ( 1 ∩ a ) Proof. Let σ : { a , b } → P (Σ ⋆ ) . Paul Brunet 7/18 Language Algebra

  17. Free Representation Example Lang | = ( 1 ∩ a ) · b ≃ b · ( 1 ∩ a ) Proof. Let σ : { a , b } → P (Σ ⋆ ) . ◮ If ε ∈ σ ( a ) : � σ (( 1 ∩ a ) · b ) = σ ( b · ( 1 ∩ a )) = � ◮ If ε / ∈ σ ( a ) : � σ (( 1 ∩ a ) · b ) = � σ ( b · ( 1 ∩ a )) = Paul Brunet 7/18 Language Algebra

  18. Free Representation Example Lang | = ( 1 ∩ a ) · b ≃ b · ( 1 ∩ a ) Proof. Let σ : { a , b } → P (Σ ⋆ ) . ◮ If ε ∈ σ ( a ) : then � σ ( 1 ∩ a ) = { ε } , thus: � σ (( 1 ∩ a ) · b ) = σ ( b · ( 1 ∩ a )) = � ◮ If ε / ∈ σ ( a ) : � σ (( 1 ∩ a ) · b ) = � σ ( b · ( 1 ∩ a )) = Paul Brunet 7/18 Language Algebra

  19. Free Representation Example Lang | = ( 1 ∩ a ) · b ≃ b · ( 1 ∩ a ) Proof. Let σ : { a , b } → P (Σ ⋆ ) . ◮ If ε ∈ σ ( a ) : then � σ ( 1 ∩ a ) = { ε } , thus: � σ (( 1 ∩ a ) · b ) = { ε } · σ ( b ) = σ ( b ) . σ ( b · ( 1 ∩ a )) = σ ( b ) · { ε } = σ ( b ) . � ◮ If ε / ∈ σ ( a ) : � σ (( 1 ∩ a ) · b ) = � σ ( b · ( 1 ∩ a )) = Paul Brunet 7/18 Language Algebra

  20. Free Representation Example Lang | = ( 1 ∩ a ) · b ≃ b · ( 1 ∩ a ) Proof. Let σ : { a , b } → P (Σ ⋆ ) . ◮ If ε ∈ σ ( a ) : then � σ ( 1 ∩ a ) = { ε } , thus: � σ (( 1 ∩ a ) · b ) = { ε } · σ ( b ) = σ ( b ) . σ ( b · ( 1 ∩ a )) = σ ( b ) · { ε } = σ ( b ) . � ◮ If ε / ∈ σ ( a ) : then � σ ( 1 ∩ a ) = ∅ , thus: � σ (( 1 ∩ a ) · b ) = � σ ( b · ( 1 ∩ a )) = Paul Brunet 7/18 Language Algebra

  21. Free Representation Example Lang | = ( 1 ∩ a ) · b ≃ b · ( 1 ∩ a ) Proof. Let σ : { a , b } → P (Σ ⋆ ) . ◮ If ε ∈ σ ( a ) : then � σ ( 1 ∩ a ) = { ε } , thus: � σ (( 1 ∩ a ) · b ) = { ε } · σ ( b ) = σ ( b ) . σ ( b · ( 1 ∩ a )) = σ ( b ) · { ε } = σ ( b ) . � ◮ If ε / ∈ σ ( a ) : then � σ ( 1 ∩ a ) = ∅ , thus: � σ (( 1 ∩ a ) · b ) = ∅ · σ ( b ) = ∅ . � σ ( b · ( 1 ∩ a )) = σ ( b ) · ∅ = ∅ . Paul Brunet 7/18 Language Algebra

  22. Free Representation Example Lang | = ( 1 ∩ a ) · b ≃ b · ( 1 ∩ a ) Proof. Let σ : { a , b } → P (Σ ⋆ ) . ◮ If ε ∈ σ ( a ) : then � σ ( 1 ∩ a ) = { ε } , thus: � σ (( 1 ∩ a ) · b ) = { ε } · σ ( b ) = σ ( b ) . � σ ( b · ( 1 ∩ a )) = σ ( b ) · { ε } = σ ( b ) . ◮ If ε / ∈ σ ( a ) : then � σ ( 1 ∩ a ) = ∅ , thus: � σ (( 1 ∩ a ) · b ) = ∅ · σ ( b ) = ∅ . � σ ( b · ( 1 ∩ a )) = σ ( b ) · ∅ = ∅ . � Paul Brunet 7/18 Language Algebra

  23. Free Representation Example Lang | = ( 1 ∩ a ) · b ≃ b · ( 1 ∩ a ) Proof. Let σ : { a , b } → P (Σ ⋆ ) . ◮ If ε ∈ σ ( a ) : then � σ ( 1 ∩ a ) = { ε } , thus: � σ (( 1 ∩ a ) · b ) = { ε } · σ ( b ) = σ ( b ) . � σ ( b · ( 1 ∩ a )) = σ ( b ) · { ε } = σ ( b ) . ◮ If ε / ∈ σ ( a ) : then � σ ( 1 ∩ a ) = ∅ , thus: � σ (( 1 ∩ a ) · b ) = ∅ · σ ( b ) = ∅ . � σ ( b · ( 1 ∩ a )) = σ ( b ) · ∅ = ∅ . � Idea Compare 1-free terms under the assumption that certain variables contain ε . Paul Brunet 7/18 Language Algebra

  24. Free Representation Weak graphs Definition A weak graph is a pair of a graph and a set of tests. Paul Brunet 8/18 Language Algebra

  25. Free Representation Weak graphs Definition A weak graph is a pair of a graph and a set of tests. Weak graph preorder � G , A � ◭ � H , B � if B ⊆ A and there is an A -weak morphism from H to G . Paul Brunet 8/18 Language Algebra

  26. Free Representation Weak graphs Definition A weak graph is a pair of a graph and a set of tests. Weak graph preorder � G , A � ◭ � H , B � if B ⊆ A and there is an A -weak morphism from H to G . A = { a } a b H : a c b G : a c Paul Brunet 8/18 Language Algebra

  27. Free Representation Characterisation Theorem u , v ∈ T X ::= 1 | a | u · v | u ∩ v Paul Brunet 9/18 Language Algebra

  28. Free Representation Characterisation Theorem u , v ∈ T X ::= 1 | a | u · v | u ∩ v For every term u ∈ T X we can build a weak graph G ( u ) . Paul Brunet 9/18 Language Algebra

  29. Free Representation Characterisation Theorem u , v ∈ T X ::= 1 | a | u · v | u ∩ v For every term u ∈ T X we can build a weak graph G ( u ) . Corollary Lang | = u ⊆ v ⇔ G ( u ) ◭ G ( v ) . Paul Brunet 9/18 Language Algebra

  30. Free Representation Free representation of expressions | e � | e ⋆ . e , f ∈ E X ::= 0 | 1 | a | e ∪ f | e ∩ f | e · f Paul Brunet 10/18 Language Algebra

  31. Free Representation Free representation of expressions | e � | e ⋆ . e , f ∈ E X ::= 0 | 1 | a | e ∪ f | e ∩ f | e · f E X Paul Brunet 10/18 Language Algebra

  32. Free Representation Free representation of expressions | e � | e ⋆ . e , f ∈ E X ::= 0 | 1 | a | e ∪ f | e ∩ f | e · f E X T P ( T X ∪ X ′ ) Paul Brunet 10/18 Language Algebra

  33. Free Representation Free representation of expressions | e � | e ⋆ . e , f ∈ E X ::= 0 | 1 | a | e ∪ f | e ∩ f | e · f E X T P ( T X ∪ X ′ ) P ( G ) P ( WeakGraph X ∪ X ′ ) Paul Brunet 10/18 Language Algebra

  34. Free Representation Free representation of expressions | e � | e ⋆ . e , f ∈ E X ::= 0 | 1 | a | e ∪ f | e ∩ f | e · f E X T P ( T X ∪ X ′ ) P ( G ) P ( WeakGraph X ∪ X ′ ) ◭ _ P ( WeakGraph X ∪ X ′ ) Paul Brunet 10/18 Language Algebra

  35. Free Representation Free representation of expressions | e � | e ⋆ . e , f ∈ E X ::= 0 | 1 | a | e ∪ f | e ∩ f | e · f E X T P ( T X ∪ X ′ ) P ( G ) R P ( WeakGraph X ∪ X ′ ) ◭ _ P ( WeakGraph X ∪ X ′ ) Paul Brunet 10/18 Language Algebra

  36. Free Representation Free representation of expressions | e � | e ⋆ . e , f ∈ E X ::= 0 | 1 | a | e ∪ f | e ∩ f | e · f E X T P ( T X ∪ X ′ ) P ( G ) R P ( WeakGraph X ∪ X ′ ) ◭ _ P ( WeakGraph X ∪ X ′ ) Theorem Lang | = e ≃ f ⇔ R ( e ) = R ( f ) Paul Brunet 10/18 Language Algebra

  37. Free Representation Free representation of expressions | e � | e ⋆ . e , f ∈ E X ::= 0 | 1 | a | e ∪ f | e ∩ f | e · f E X T P ( T X ∪ X ′ ) Lemma P ( G ) R If e doesn’t use the Kleene star, then T ( e ) is finite. P ( WeakGraph X ∪ X ′ ) ◭ _ P ( WeakGraph X ∪ X ′ ) Theorem Lang | = e ≃ f ⇔ R ( e ) = R ( f ) Paul Brunet 10/18 Language Algebra

  38. Main results Outline I. Introduction II. Free Representation III. Main results IV. Outlook Paul Brunet 11/18 Language Algebra

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend